1. Record Nr. UNINA9910254981403321

Autore Reus Bernhard

Titolo Limits of Computation : From a Programming Perspective / / by
Bernhard Reus

Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, ,
2016

ISBN 3-319-27889-4

Edizione [1st ed. 2016.]

Descrizione fisica 1 online resource (XVIII, 348 p. 80 illus.)

Collana Undergraduate Topics in Computer Science, , 1863-7310

Disciplina 001.642

Soggetti Algorithms

Algorithm Analysis and Problem Complexity
Mathematics of Algorithmic Complexity

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Note generali Includes index.

Nota di contenuto Intro -- Foreword -- Preface -- For Tutors -- Acknowledgements --

Contents -- 1 Limits? What Limits? -- 1.1 Physical Limits of
Computation -- 1.1.1 Fundamental Engineering Constraints to
Semiconductor Manufacturing and Scaling -- 1.1.2 Fundamental Limits
to Energy Efficiency -- 1.1.3 Fundamental Physical Constraints on
Computing in General -- 1.2 The Limits Addressed -- 1.2.1
Computability Overview -- 1.2.2 Complexity Overview -- References --
Part | Computability -- 2 Problems and Effective Procedures -- 2.1 On
Computability -- 2.1.1 Historical Remarks -- 2.1.2 Effective Procedures
-- 2.2 Sets, Relations and Functions -- 2.2.1 Sets -- 2.2.2 Relations --
2.2.3 Functions -- 2.2.4 Partial Functions -- 2.2.5 Total Functions --
2.3 Problems -- 2.3.1 Computing Solutions to Problems -- References
-- 3 The WHILE-Language -- 3.1 The Data Type of Binary Trees -- 3.2
WHILE-Syntax -- 3.2.1 Expressions -- 3.2.2 Commands -- 3.2.3
Programs -- 3.2.4 A Grammar for WHILE -- 3.2.5 Layout Conventions
and Brackets -- 3.3 Encoding Data Types as Trees -- 3.3.1 Boolean
Values -- 3.3.2 Lists and Pairs -- 3.3.3 Natural Numbers -- 3.3.4 Finite
Words -- 3.4 Sample Programs -- 3.4.1 Addition -- 3.4.2 List Reversal
-- 3.4.3 Tail Recursion -- 3.4.4 Analysis of Algorithms -- References

-- 4 Semantics of WHILE -- 4.1 Stores -- 4.2 Semantics of Programs --
4.3 Semantics of Commands -- 4.4 Semantics of Expressions --



References -- 5 Extensions of WHILE -- 5.1 Equality -- 5.2 Literals --
5.2.1 Number Literals -- 5.2.2 Boolean Literals -- 5.3 Adding Atoms --
5.4 List Constructor -- 5.5 Macro Calls -- 5.6 Switch Statement --
References -- 6 Programs as Data Objects -- 6.1 Interpreters Formally
-- 6.2 Abstract Syntax Trees -- 6.3 Encoding of WHILE-ASTS in
mathbbD -- Reference -- 7 A Self-interpreter for WHILE -- 7.1 A Self-
interpreter for WHILE -Programs with One Variable.

7.1.1 General Tree Traversal for ASTs -- 7.1.2 The STEP Macro -- 7.2 A
Self-interpreter for WHILE -- 7.2.1 Store Manipulation Macros --
References -- 8 An Undecidable (Non-computable) Problem -- 8.1
WHILE-Computability and Decidability -- 8.2 The Halting Problem for
WHILE -- 8.3 Diagonalisation and the Barber ““Paradox" -- 8.4 Proof
of the Undecidability of the Halting Problem -- References -- 9 More
Undecidable Problems -- 9.1 Semi-decidability of the Halting Problem
-- 9.2 Rice's Theorem -- 9.3 The Tiling Problem -- 9.4 Problem
Reduction -- 9.5 Other (Famous) Undecidable Problems -- 9.6 Dealing
with Undecidable Problems -- 9.7 A Fast-Growing Non-computable
Function -- References -- 10 Self-referencing Programs -- 10.1 The S-
m-n Theorem -- 10.2 Kleene's Recursion Theorem -- 10.3 Recursion
Elimination -- References -- 11 The Church-Turing Thesis -- 11.1 The
Thesis -- 11.2 Semantic Framework for Machine-Like Models -- 11.3
Turing Machines TM -- 11.4 GOTO-Language -- 11.5 Register
Machines RAM and SRAM -- 11.6 Counter Machines CM -- 11.7
Cellular Automata -- 11.7.1 2D: Game of Life -- 11.7.2 1D: Rule 110

-- 11.8 Robustness of Computability -- 11.8.1 The Crucial Role of
Compilers -- 11.8.2 Equivalence of Models -- References -- Part I
Complexity -- 12 Measuring Time Usage -- 12.1 Unit-Cost Time
Measure -- 12.2 Time Measure for WHILE -- 12.3 Comparing
Programming Languages Considering Time -- References -- 13
Complexity Classes -- 13.1 Runtime Bounds -- 13.2 Time Complexity
Classes -- 13.3 Lifting Simulation Properties to Complexity Classes --
13.4 Big-O and Little-o -- References -- 14 Robustness of P -- 14.1
Extended Church--Turing Thesis -- 14.2 Invariance or Cook's Thesis
-- 14.2.1 Non-sequential Models -- 14.2.2 Evidence for Cook's Thesis
-- 14.2.3 Linear Time -- 14.3 Cobham--Edmonds Thesis --

References -- 15 Hierarchy Theorems.

15.1 Linear Time Hierarchy Theorems -- 15.2 Beyond Linear Time --
15.3 Gaps in the Hierarchy -- References -- 16 Famous Problems in P
-- 16.1 Decision Versus Optimisation Problems -- 16.2 Predecessor
Problem -- 16.3 Membership Test for a Context Free Language -- 16.4
Primality Test -- 16.5 Graph Problems -- 16.5.1 Reachability in a
Graph -- 16.5.2 Shortest Paths in a Graph -- 16.5.3 Maximal
Matchings -- 16.5.4 Min-Cut and Max-Flow -- 16.5.5 The Seven
Bridges of Konigsberg -- 16.6 Linear Programming -- References --
17 Common Problems Not Known to Be in P -- 17.1 The Travelling
Salesman Problem (TSP) -- 17.2 The Graph Colouring Problem -- 17.3
Max-Cut Problem -- 17.4 The 0-1 Knapsack Problem -- 17.5 Integer
Programming Problem -- 17.6 Does Not Being in P Matter? --
References -- 18 The One-Million-Dollar Question -- 18.1 The
Complexity Class NP -- 18.2 Nondeterministic Programs -- 18.2.1
Time Measure of Nondeterministic Programs -- 18.2.2 Some Basic
Facts About NP -- 18.3 Robustness of NP -- 18.4 Problems in NP --
18.5 The Biggest Open Problem in (Theoretical) Computer Science --
References -- 19 How Hard Is a Problem? -- 19.1 Reminder: Effective
Reductions -- 19.2 Polynomial Time Reduction -- 19.3 Hard Problems
-- References -- 20 Complete Problems -- 20.1 A First NP-complete
Problem -- 20.2 More NP-complete Problems -- 20.3 Puzzles and
Games -- 20.3.1 Chess -- 20.3.2 Sudoku -- 20.3.3 Tile-Matching



Sommario/riassunto

Games -- 20.4 Database Queries -- 20.5 Policy Based Routing -- 20.6
““Limbo" Problems -- 20.7 Complete Problems in Other Classes --
20.7.1 P-complete -- 20.7.2 RE-complete -- References -- 21 How to
Solve NP-Complete Problems -- 21.1 Exact Algorithms -- 21.2
Approximation Algorithms -- 21.3 Parallelism -- 21.4 Randomization
--21.4.1 The Class RP -- 21.4.2 Probabilistic Algorithms -- 21.5
Solving the Travelling Salesman Problem -- 21.5.1 Exact Solutions.
21.5.2 Approximative Solutions -- 21.6 When Bad Complexity is Good
News -- References -- 22 Molecular Computing -- 22.1 The
Beginnings of DNA Computing -- 22.2 DNA Computing Potential --
22.3 DNA Computing Challenges -- 22.4 Abstract Models of Molecular
Computation -- 22.4.1 Chemical Reaction Networks (CRN) -- 22.4.2
CRNs as Effective Procedures -- 22.4.3 Are CRNs Equivalent to Other
Notions of Computation? -- 22.4.4 Time Complexity for CRNs --
22.4.5 Implementing CRNs -- References -- 23 Quantum Computing
-- 23.1 Molecular Electronics -- 23.2 The Mathematics of Quantum
Mechanics -- 23.3 Quantum Computability and Complexity -- 23.4
Quantum Algorithms -- 23.4.1 Shor's Algorithm -- 23.4.2 Grover's
Algorithm -- 23.5 Building Quantum Computers -- 23.6 Quantum
Computing Challenges -- 23.7 To Boldly Go -- References -- Further
Reading-Computabilityand Complexity Textbooks -- Glossary --
Index.

This textbook discusses the most fundamental and puzzling questions
about the foundations of computing. In 23 lecture-sized chapters it
provides an exciting tour through the most important results in the
field of computability and time complexity, including the Halting
Problem, Rice's Theorem, Kleene's Recursion Theorem, the Church-
Turing Thesis, Hierarchy Theorems, and Cook-Levin's Theorem. Each
chapter contains classroom-tested material, including examples and
exercises. Links between adjacent chapters provide a coherent
narrative. Fundamental results are explained lucidly by means of
programs written in a simple, high-level imperative programming
language, which only requires basic mathematical knowledge.
Throughout the book, the impact of the presented results on the entire
field of computer science is emphasised. Examples range from program
analysis to networking, from database programming to popular games
and puzzles. Numerous biographical footnotes about the famous
scientists who developed the subject are also included. "Limits of
Computation" offers a thorough, yet accessible, introduction to
computability and complexity for the computer science student of the
21st century.



