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This textbook discusses the most fundamental and puzzling questions
about the foundations of computing. In 23 lecture-sized chapters it
provides an exciting tour through the most important results in the
field of computability and time complexity, including the Halting
Problem, Rice's Theorem, Kleene's Recursion Theorem, the Church-
Turing Thesis, Hierarchy Theorems, and Cook-Levin's Theorem. Each
chapter contains classroom-tested material, including examples and
exercises. Links between adjacent chapters provide a coherent
narrative. Fundamental results are explained lucidly by means of
programs written in a simple, high-level imperative programming
language, which only requires basic mathematical knowledge.
Throughout the book, the impact of the presented results on the entire
field of computer science is emphasised. Examples range from program
analysis to networking, from database programming to popular games
and puzzles. Numerous biographical footnotes about the famous
scientists who developed the subject are also included. "Limits of
Computation" offers a thorough, yet accessible, introduction to
computability and complexity for the computer science student of the
21st century.



