1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Nota di bibliografia
Nota di contenuto

Sommario/riassunto

UNINA9910254818603321
Rumpe Bernhard

Agile Modeling with UML : Code Generation, Testing, Refactoring / / by
Bernhard Rumpe

Cham : , : Springer International Publishing : , : Imprint : Springer, ,
2017

3-319-58862-1

[1st ed. 2017.]
1 online resource (XIll, 388 p. 176 illus., 101 illus. in color.)

005.117

Software engineering

Management information systems

Computer science

Software Engineering

Software Management

Management of Computing and Information Systems

Inglese
Materiale a stampa
Monografia

Includes bibliographical references and index.

1 Introduction -- 2 Agile and UML-Based Methodology -- 3 Compact
Overview of UML/P -- 4 Principles of Code Generation -- 5
Transformations for Code Generation -- 6 Principles of Testing with
Models -- 7 Model-Based Tests -- 8 Design Patterns for Testing -- 9
Refactoring as a Model Transformation -- 10 Refactoring of Models --
11 Summary, Further Reading and Outlook.

This book focuses on the methodological treatment of UML/P and
addresses three core topics of model-based software development:
code generation, the systematic testing of programs using a model-
based definition of test cases, and the evolutionary refactoring and
transformation of models. For each of these topics, it first details the
foundational concepts and technigues, and then presents their
application with UML/P. This separation between basic principles and
applications makes the content more accessible and allows the reader
to transfer this knowledge directly to other model-based approaches
and languages. After an introduction to the book and its primary goals
in Chapter 1, Chapter 2 outlines an agile UML-based approach using



UML/P as the primary development language for creating executable
models, generating code from the models, designing test cases, and
planning iterative evolution through refactoring. In the interest of
completeness, Chapter 3 provides a brief summary of UML/P, which is
used throughout the book. Next, Chapters 4 and 5 discuss core
techniques for code generation, addressing the architecture of a code
generator and methods for controlling it, as well as the suitability of
UML/P notations for test or product code. Chapters 6 and 7 then
discuss general concepts for testing software as well as the special
features which arise due to the use of UML/P. Chapter 8 details test
patterns to show how to use UML/P diagrams to define test cases and
emphasizes in particular the use of functional tests for distributed and
concurrent software systems. In closing, Chapters 9 and 10 examine
techniques for transforming models and code and thus provide a solid
foundation for refactoring as a type of transformation that preserves
semantics. Overall, this book will be of great benefit for practical
software development, for academic training in the field of Software
Engineering, and for research in the area of model-based software
development. Practitioners will learn how to use modern model-based
techniques to improve the production of code and thus significantly
increase quality. Students will find both important scientific basics as
well as direct applications of the techniques presented. And last but not
least, the book will offer scientists a comprehensive overview of the
current state of development in the three core topics it covers.



