Record Nr.	UNINA9910254640503321
Autore	Knolle Johannes
Titolo	Dynamics of a Quantum Spin Liquid / / by Johannes Knolle
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
ISBN	3-319-23953-8
Edizione	[1st ed. 2016.]
Descrizione fisica	1 online resource (150 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530
Soggetti	Superconductivity Superconductors Magnetism Magnetic materials Quantum field theory String theory Strongly Correlated Systems, Superconductivity Magnetism, Magnetic Materials Quantum Field Theories, String Theory
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral thesis accepted by the Max Planck Institute for the Physics of Complex Systems, Dresden, Germany."
Nota di bibliografia	Includes bibliographical references.
Nota di contenuto	Introduction Kitaev's Honeycomb Lattice Model Dynamic Spin Correlations - Mapping to a Quantum Quench Results for the Structure Error Non-Abelian Phase and the Effect of Disorder Raman Scattering Conclusion and Outlook Appendix A: Pfaffians from Path Integrals Appendix B: X-Ray Edge and Singular Integral Equations Appendix C: Exact Diagonalization of Four Dimers Appendix D: Calculation of Matrix Elements.
Sommario/riassunto	This thesis presents an exact theoretical study of dynamical correlation functions in different phases of a two-dimensional quantum spin liquid. By calculating the dynamical spin structure factor and the Raman scattering cross section, this thesis shows that there are salient signatures—qualitative and quantitative—of the Majorana fermions and the gauge fluxes emerging as effective degrees of freedom in the

1.

exactly solvable Kitaev honeycomb lattice model. The model is a representative of a class of spin liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features of the response functions should therefore be characteristic for this broad class of topological states.