1. Record Nr. UNINA9910254617603321

Autore
Titolo
Antenucci Fabrizio

Statistical Physics of Wave Interactions [[electronic resource]] : A Unified Approach to Mode-Locking and Random Lasers / / by Fabrizio Antenucci

Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, ,
ISBN	3016

Edizione	[1st ed. 2016.]
Descrizione fisica	1 online resource (XIV, 146 p. 44 illus., 24 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , $2190-$
	5053

Disciplina 530.1595

Soggetti	Quantum optics
Lasers	
	Photonics
Statistical physics	
	Dynamical systems
	Quantum Optics
	Optics, Lasers, Photonics, Optical Devices
Complex Systems	
	Statistical Physics and Dynamical Systems

Lingua di pubblicazione Inglese

Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di bibliografia	Includes bibliographical references.
Nota di contenuto	Introduction -- Multimode Laser Theory for Open Cavities -- Analytic Solution of the narrow-bandwidth model -- Beyond Mean Field - Mode
	Locked lasers -- Conclusions and Perspectives.
This thesis reveals the utility of pursuing a statistical physics approach	
in the description of wave interactions in multimode optical systems.	
To that end, the appropriate Hamiltonian models are derived and their	
limits of applicability are discussed. The versatility of the framework	
allows the characterization of ordered and disordered lasers in open	
and closed cavities in a unified scheme, from standard mode-locking to	
random lasers. With the use of replica method and Monte Carlo	
simulations, the models are categorized on the basis of universal	
properties, and nontrivial predictions of experimental relevance are	

obtained. In particular, the approach makes it possible to nonperturbatively treat the interplay between disorder and nonlinearity and to envisage novel and fascinating physical phenomena such as glassy random lasers, providing a novel way to experimentally investigate replica symmetry breaking.

