Record Nr.	UNINA9910254615903321
Autore	Denkova Denitza
Titolo	Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light / / by Denitza Denkova
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
ISBN	3-319-28793-1
Edizione	[1st ed. 2016.]
Descrizione fisica	1 online resource (108 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	530
Soggetti	Lasers
	Photonics
	Optical materials
	Electronic materials
	Nanoscale science Nanoscience
	Nanostructures
	Nanotechnology
	Optics, Lasers, Photonics, Optical Devices
	Optical and Electronic Materials
	Nanoscale Science and Technology
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction Imaging the Magnetic Near-eld of Plasmon Modes in Bar Antennas A Near-Field-Aperture Probe as an Optical Magnetic Source and Detector Magnetic Near-Field Imaging of Increasingly Complex Plasmonic Antennas Plasmon-Enhanced Sub-wavelength Laser Ablation: Plasmonic Nano-Jets Conclusions and Outlook.
Sommario/riassunto	This thesis focuses on a means of obtaining, for the first time, full electromagnetic imaging of photonic nanostructures. The author also develops a unique practical simulation framework which is used to confirm the results. The development of innovative photonic devices and metamaterials with tailor-made functionalities depends critically on our capability to characterize them and understand the underlying

1.

light-matter interactions. Thus, imaging all components of the electromagnetic light field at nanoscale resolution is of paramount importance in this area. This challenge is answered by demonstrating experimentally that a hollow-pyramid aperture probe SNOM can directly image the horizontal magnetic field of light in simple plasmonic antennas – rod, disk and ring. These results are confirmed by numerical simulations, showing that the probe can be approximated, to first order, by a magnetic point-dipole source. This approximation substantially reduces the simulation time and complexity and facilitates the otherwise controversial interpretation of near-field images. The validated technique is used to study complex plasmonic antennas and to explore new opportunities for their engineering and characterization.