Record Nr.	UNINA9910254583003321
Autore	Kobayashi Tatsuya
Titolo	Study of Electronic Properties of 122 Iron Pnictide Through Structural, Carrier-Doping, and Impurity-Scattering Effects / / by Tatsuya Kobayashi
Pubbl/distr/stampa	Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
ISBN	981-10-4475-9
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource (XII, 88 p. 56 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	537.623
Soggetti	Superconductivity
	Superconductors
	Optical materials
	Electronic materials
	Spectroscopy
	Microscopy
	Solid state physics
	Magnetic materials
	Strongly Correlated Systems, Superconductivity
	Optical and Electronic Materials
	Spectroscopy and Microscopy
	Solid State Physics
	Magnetism, Magnetic Materials
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral Thesis accepted by Osaka University, Toyonaka, Japan."
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction Experimental Methods Electronic Phase Diagram and Superconducting Property of SrFe2(As1-xPx)2 In-Plane Resistivity Anisotropy of Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) Optical Properties of Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) Conclusion.
Sommario/riassunto	This thesis presents various characteristics of 122-type iron pnictide (FeSC) such as crystal and electronic structure, carrier-doping effect, and impurity-scattering effect, using transport, magnetization, specific

1.

heat, single-crystal X-ray diffraction, and optical spectral measurements. Most notably the measurement on the magnetic fluctuation in the material successfully explains already known unusual electronic properties, i.e., superconducting gap symmetry, anisotropy of in-plane resistivity in layered structure, and charge dynamics; and comparing them with those of normal phase, the controversial problems in FeSCs are eventually settled. The thesis provides broad coverage of the physics of FeSCs both in the normal and superconducting phase, and readers therefore benefit from the efficient up-to-date study of FeSCs in this thesis. An additional attraction is the detailed description of the experimental result critical for the controversial problems remaining since the discovery of FeSC in 2008, which helps readers follow up recent developments in superconductor research.