Record Nr.	UNINA9910254331703321
Autore	Hu Kai
Titolo	Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips : Design Automation, Testing, and Design-for- Testability / / by Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
ISBN	3-319-56255-X
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource (XIII, 142 p. 64 illus., 55 illus. in color.)
Disciplina	621.3815
Soggetti	Electronic circuits Biomedical engineering Microprocessors Circuits and Systems Biomedical Engineering and Bioengineering Processor Architectures
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Materiale a stampa
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

microfluidic biochips and provides a systematic approach for solving this problem; Introduces a wash-optimization method for crosscontamination removal; Presents a design-for-testability (DfT) technique that can achieve 100% fault coverage at the logic level, i.e., complete defect coverage for all valves and microchannels; Includes a method for fault diagnosis in flow-based microfluidic biochips, which detects leakage and blockage defects in both control and flow layers.