Record Nr.	UNINA9910254233203321
Titolo	Application of Surrogate-based Global Optimization to Aerodynamic Design / / edited by Emiliano Iuliano, Esther Andrés Pérez
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
ISBN	3-319-21506-X
Edizione	[1st ed. 2016.]
Descrizione fisica	1 online resource (86 p.)
Collana	Springer Tracts in Mechanical Engineering, , 2195-9862
Disciplina	629.1323
Soggetti	Aerospace engineeringAstronauticsFluid mechanicsEngineering designComputer simulationAerospace Technology and AstronauticsEngineering Fluid DynamicsEngineering DesignSimulation and Modeling
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Preface; Contents; Contributors; Acronyms; 1 Aerodynamic Shape Design by Evolutionary Optimization and Support Vector Machines; 1.1 Introduction; 1.2 Literature Review; 1.3 Proposed SBGO Approach; 1.3.1 Geometry Parameterization with Non-rational Uniform B-Splines; 1.3.2 The DLR TAU Solver; 1.3.3 SVMs as Surrogate Model; 1.3.4 Evolutionary Optimization Algorithm; 1.3.5 Intelligent Estimation Search with Sequential Learning; 1.4 Numerical Results; 1.4.1 Test Cases Definition;

1.

	Surrogate Model; 2.3.1 SVD Solution; 2.3.2 Pseudo-Continuous Global Representation; 2.4 In-Fill Criteria; 2.4.1 Error-Driven In-Fill Criteria; 2.4.2 Objective-Driven Criteria; 2.5 Surrogate-Based Shape Optimization Approach 2.6 Application: Multi-Point Shape Optimization of a Two-Dimensional Airfoil2.6.1 Problem Definition; 2.6.2 Optimization Setup; 2.6.3 Surrogate Model Validation; 2.6.4 Optimization Results; Conclusions; References; 3 PCA-Enhanced Metamodel-Assisted Evolutionary Algorithms for Aerodynamic Optimization; 3.1 Introduction; 3.2 PCA- Enhanced EAs and MAEAs; 3.2.1 PCA-Enhanced Evolution Operators; 3.2.2 EA with PCA-Assisted Metamodels; 3.3 Applications; 3.3.1 Preliminary Design of a Supersonic Business Jet; 3.3.2 Aeroelastic Design of a Wind Turbine Blade; 3.3.3 Optimization of an Isolated Airfoil ConclusionsReferences; 4 Multi-Objective Surrogate Based Optimization of Gas Cyclones Using Support Vector Machines and CFD Simulations; 4.1 Introduction; 4.1.1 Cyclone Geometry; 4.1.2 Cyclone Performance; 4.1.3 Literature Review; 4.1.4 Target of This Study; 4.2 Least Squares: Support Vector Regression; 4.2.1 LS-SVR Parameter Optimization; 4.3 Results and Discussion; 4.3.1 The Training Dataset; 4.3.2 Geometry Effect; 4.3.3 Geometry Optimization; Conclusions; References
Sommario/riassunto	Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high- multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.