

1. Record Nr.	UNINA9910254174203321
Autore	Schirru Michele
Titolo	Development of an Ultrasonic Sensing Technique to Measure Lubricant Viscosity in Engine Journal Bearing In-Situ / / by Michele Schirru
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
ISBN	9783319534084
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource (XVI, 167 p. 155 illus., 80 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	620.11274
Soggetti	Acoustical engineering Tribology Corrosion and anti-corrosives Coatings Automotive engineering Materials science Materials—Surfaces Thin films Engineering Acoustics Tribology, Corrosion and Coatings Automotive Engineering Characterization and Evaluation of Materials Surfaces and Interfaces, Thin Films
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction -- Background on Viscosity and Lubrication -- Background on Ultrasound -- Literature review -- A Novel Ultrasonic Model for Non-Newtonian Fluids -- Viscosity Measurement at an Aluminium-Oil Boundary -- The Matching Layer Method -- Viscosity Measurement in a Journal Bearing -- Conclusions.
Sommario/riassunto	This thesis presents a novel ultrasonic instrument for non-invasive and in-situ characterization of journal bearing lubricant viscosity. In particular, the application to journal bearings is described by non-

invasively measuring the viscosity and localized power losses throughout operation. This ultrasonic viscometer is based on the reflection of polarized shear waves from a thin resonating coating layer to increase the measurement sensitivity, in comparison to conventional ultrasonic methods. This instrument allows for a full engine oil viscoelastic characterization in-situ. The book investigates the effects of temperature, pressure and shear rate, and describes in detail the ultrasonic setup and method. Further, it demonstrates that the same technique can be applied similarly to monitor the lubrication of other engine components. As such, it offers a unique instrument that can drive the research of oil formulations to improve engine performance and fulfill the requirements of international fuel economy regulations. .
