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This text provides an introduction to some of the best-known fixed-
point theorems, with an emphasis on their interactions with topics in
analysis. The level of exposition increases gradually throughout the
book, building from a basic requirement of undergraduate proficiency
to graduate-level sophistication. Appendices provide an introduction to
(or refresher on) some of the prerequisite material and exercises are
integrated into the text, contributing to the volume’s ability to be used
as a self-contained text. Readers will find the presentation especially
useful for independent study or as a supplement to a graduate course
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in fixed-point theory. The material is split into four parts: the first
introduces the Banach Contraction-Mapping Principle and the Brouwer
Fixed-Point Theorem, along with a selection of interesting applications;
the second focuses on Brouwer’s theorem and its application to John
Nash’s work; the third applies Brouwer’s theorem to spaces of infinite
dimension; and the fourth rests on the work of Markov, Kakutani, and
Ryll–Nardzewski surrounding fixed points for families of affine maps.


