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The problem of enumerating maps (a map is a set of polygonal
"countries" on a world of a certain topology, not necessarily the plane
or the sphere) is an important problem in mathematics and physics,
and it has many applications ranging from statistical physics, geometry,
particle physics, telecommunications, biology, ... etc. This problem has
been studied by many communities of researchers, mostly
combinatorists, probabilists, and physicists. Since 1978, physicists
have invented a method called "matrix models" to address that
problem, and many results have been obtained. Besides, another
important problem in mathematics and physics (in particular string
theory), is to count Riemann surfaces. Riemann surfaces of a given
topology are parametrized by a finite number of real parameters (called
moduli), and the moduli space is a finite dimensional compact manifold
or orbifold of complicated topology. The number of Riemann surfaces
is the volume of that moduli space. More generally, an important
problem in algebraic geometry is to characterize the moduli spaces, by
computing not only their volumes, but also other characteristic
numbers called intersection numbers. Witten's conjecture (which was
first proved by Kontsevich), was the assertion that Riemann surfaces
can be obtained as limits of polygonal surfaces (maps), made of a very
large number of very small polygons. In other words, the number of
maps in a certain limit, should give the intersection numbers of moduli
spaces. In this book, we show how that limit takes place. The goal of
this book is to explain the "matrix model" method, to show the main
results obtained with it, and to compare it with methods used in
combinatorics (bijective proofs, Tutte's equations), or algebraic
geometry (Mirzakhani's recursions). The book intends to be self-
contained and accessible to graduate students, and provides
comprehensive proofs, several examples, and gives the general formula
for the enumeration of maps on surfaces of any topology. In the end,
the link with more general topics such as algebraic geometry, string
theory, is discussed, and in particular a proof of the Witten-Kontsevich
conjecture is provided.


