Record Nr.	UNINA9910253977403321
Autore	Zhang Ji-Guang
Titolo	Lithium Metal Anodes and Rechargeable Lithium Metal Batteries / / by Ji-Guang Zhang, Wu Xu, Wesley A. Henderson
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource : illustrations (some color)
Collana	Springer Series in Materials Science, , 0933-033X ; ; 249
Disciplina	621.312424
Soggetti	Energy storage
	Electrochemistry
	Optical materials
	Electronic materials
	Renewable energy resources Energy Storage
	Optical and Electronic Materials
	Renewable and Green Energy
	Renewable and Green Energy
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Inglese Materiale a stampa
	Inglese
Formato	Inglese Materiale a stampa
Formato Livello bibliografico	Inglese Materiale a stampa Monografia Includes bibliographical references and index. 1. Introduction 2. Characterization and Modeling of Li Dendrite
Formato Livello bibliografico Nota di bibliografia	Inglese Materiale a stampa Monografia Includes bibliographical references and index.

1.

generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anode are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anode at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the application of Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films. Summarizes the opportunities and main challenges in the application of Li metal anodes in electrochemical devices Reveals the fundamental mechanism of metal dendrite growth during electrochemical processes Reviews the main approaches and techniques used to investigate Li metal deposition processes and Li film morphologies Suggests key areas for the further development of Li metal anodes Highlights how the general principles and approaches developed for repeated deposition/stripping of smooth Li metal films can be used in other metal electrode and general electrochemical deposition of metal films.