Record Nr. Autore Titolo Pubbl/distr/stampa	UNINA9910156330203321 He Zhongjie Reduced Modelling of Planar Fuel Cells : Spatial Smoothing and Asymptotic Reduction / / by Zhongjie He, Hua Li, Karl Erik Birgersson Cham : , : Springer International Publishing : , : Imprint : Springer, ,
	2017
ISBN	3-319-42646-X
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource (XXIV, 291 p. 82 illus., 81 illus. in color.)
Disciplina Soggetti	621.3126 Energy storage Energy systems Renewable energy resources Environmental economics Mathematical models Energy Storage Energy Systems Renewable and Green Energy Environmental Economics Mathematical Modeling and Industrial Mathematics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	1 Introduction. 2 Full 3D Modeling of Planar Fuel Cells. 3 Development of Reduced PEMFC Models. 4 development of Reduced P-SOFC Models. 5 Integrated Stochastic and Deterministic Sensitivity Analysis of Cell and Stack Performances. 6 Conclusions.
Sommario/riassunto	This book focuses on novel reduced cell and stack models for proton exchange membrane fuel cells (PEMFCs) and planar solid oxide fuel cells (P-SOFCs) that serve to reduce the computational cost by two orders of magnitude or more with desired numerical accuracy, while capturing both the average properties and the variability of the dependent variables in the 3D counterparts. The information provided can also be applied to other kinds of plate-type fuel cells whose flow fields consist of parallel plain channels separated by solid ribs. These

1.

fast and efficient models allow statistical sensitivity analysis for a sample size in the order of 103 without prohibitive computational cost to be performed to investigate not only the individual, but also the simultaneous effects of a group of varying geometrical, material, and operational parameters. This provides important information for cell/stack design, and to illustrate this, Monte Carlo simulation of the reduced P-SOFC model is conducted at both the single-cell and stack levels.