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Sommario/riassunto Assembly Language for x86 Processors, 7e is suitable for
undergraduate courses in assembly language programming and
introductory courses in computer systems and computer architecture.
Proficiency in one other programming language, preferably Java, C, or
C++, isrecommended.  Written specifically for 32- and 64-bit
Intel/Windows platform, this complete and fully updated study of
assembly language teaches students to write and debug programs at
the machine level. This text simplifies and demystifies concepts that
students need to grasp before they can go on to more advanced
computer architecture and operating systems courses. Students put
theory into practice through writing software at the machine level,
creating a memorable experience that gives them the confidence to
work in any OS/machine-oriented environment.  Teaching and
Learning Experience This program presents a better teaching and
learning experience-for you and your students. It will help: Teach
Effective Design Techniques: Top-down program design demonstration
and explanation allows students to apply techniques to multiple
programming courses. Put Theory into Practice: Students will write
software at the machine level, preparing them to work in any
OS/machine-oriented environment. Tailor the Text to Fit your Course:
Instructors can cover optional chapter topics in varying order and
depth. Support Instructors and Students: Visit the author's web site
http://asmirvine.com/ for chapter objectives, debugging tools,
supplemental files, a Getting Started with MASM and Visual Studio 2012
tutorial, and more.



