1. Record Nr. UNICAMPANIAVANO033345

Autore Cotta, Machado Renato

Titolo Integral transforms in computational heat and fluid flow / Renato
Machado Cotta

Pubbl/distr/stampa Boca Raton, : CRC, 1993

Titolo uniforme Integral transforms in computational heat and fluid flow

ISBN 978-08-493-8665-7

Descrizione fisica 340 p.:ill. ; 24 cm

Soggetti 35Q30 - Navier-Stokes equations [MSC 2020]

35-XX - Partial differential equations [MSC 2020]

76-XX - Fluid mechanics [MSC 2020]

65Lxx - Numerical methods for ordinary differential equations [MSC
2020

76M>3x - Basic methods in fluid mechanics [MSC 2020]

80-XX - Classical thermodynamics, heat transfer [MSC 2020]
34B24 - Sturm-Liouville theory [MSC 2020]

65R10 - Numerical methods for integral transforms [MSC 2020]
76M40 - Complex-variables methods applied to problems in fluid
mechanics [MSC 2020]

80A19 - Diffusive and convective heat and mass transfer, heat flow
[MSC 2020]

35A22 - Transform methods (e.g. integral transforms) applied to PDEs
[MSC 2020]

80Mxx - Basic methods in thermodynamics and heat transfer [MSC
2020

80A2]1 - Radiative heat transfer [MSC 2020]

Lingua di pubblicazione Inglese
Formato Materiale a stampa
Livello bibliografico Monografia

2. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica
Collana

Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

UNINA9910154777003321
Irvine Kip R. <1951->
Assembly language for x86 processors / / Kip R. Irvine

Boston : , : Pearson, , [2015]
©2015

1-292-06655-5

[Seventh, Global edition.]

1 online resource (177 pages) : illustrations, charts, tables
Always Learning

005.265
IBM microcomputers - Programming

Inglese

Materiale a stampa
Monografia
Includes index.

Cover -- Contents -- Preface -- About the Author -- Chapter 1: Basic
Concepts -- 1.1 Welcome to Assembly Language -- 1.1.1 Questions
You Might Ask -- 1.1.2 Assembly Language Applications -- 1.1.3
Section Review -- 1.2 Virtual Machine Concept -- 1.2.1 Section Review
-- 1.3 Data Representation -- 1.3.1 Binary Integers -- 1.3.2 Binary
Addition -- 1.3.3 Integer Storage Sizes -- 1.3.4 Hexadecimal Integers
-- 1.3.5 Hexadecimal Addition -- 1.3.6 Signed Binary Integers -- 1.3.7
Binary Subtraction -- 1.3.8 Character Storage -- 1.3.9 Section Review
-- 1.4 Boolean Expressions -- 1.4.1 Truth Tables for Boolean Functions
-- 1.4.2 Section Review -- 1.5 Chapter Summary -- 1.6 Key Terms --
1.7 Review Questions and Exercises -- 1.7.1 Short Answer -- 1.7.2
Algorithm Workbench -- Chapter 2: x86 Processor Architecture -- 2.1
General Concepts -- 2.1.1 Basic Microcomputer Design -- 2.1.2
Instruction Execution Cycle -- 2.1.3 Reading from Memory -- 2.1.4
Loading and Executing a Program -- 2.1.5 Section Review -- 2.2 32-Bit
x86 Processors -- 2.2.1 Modes of Operation -- 2.2.2 Basic Execution
Environment -- 2.2.3 x86 Memory Management -- 2.2.4 Section
Review -- 2.3 64-Bit x86-64 Processors -- 2.3.1 64-Bit Operation
Modes -- 2.3.2 Basic 64-Bit Execution Environment -- 2.4 Components
of a Typical x86 Computer -- 2.4.1 Motherboard -- 2.4.2 Memory --
2.4.3 Section Review -- 2.5 Input-Output System -- 2.5.1 Levels of I1/O
Access -- 2.5.2 Section Review -- 2.6 Chapter Summary -- 2.7 Key
Terms -- 2.8 Review Questions -- Chapter 3: Assembly Language
Fundamentals -- 3.1 Basic Language Elements -- 3.1.1 First Assembly

Language Program -- 3.1.2 Integer Literals -- 3.1.3 Constant Integer
Expressions -- 3.1.4 Real Number Literals -- 3.1.5 Character Literals

-- 3.1.6 String Literals -- 3.1.7 Reserved Words -- 3.1.8 Identifiers --
3.1.9 Directives -- 3.1.10 Instructions.

3.1.11 Section Review -- 3.2 Example: Adding and Subtracting Integers
-- 3.2.1 The AddTwo Program -- 3.2.2 Running and Debugging the
AddTwo Program -- 3.2.3 Program Template -- 3.2.4 Section Review

-- 3.3 Assembling, Linking, and Running Programs -- 3.3.1 The
Assemble-Link-Execute Cycle -- 3.3.2 Listing File -- 3.3.3 Section
Review -- 3.4 Defining Data -- 3.4.1 Intrinsic Data Types -- 3.4.2 Data
Definition Statement -- 3.4.3 Adding a Variable to the AddTwo

Program -- 3.4.4 Defining BYTE and SBYTE Data -- 3.4.5 Defining
WORD and SWORD Data -- 3.4.6 Defining DWORD and SDWORD Data
-- 3.4.7 Defining QWORD Data -- 3.4.8 Defining Packed BCD (TBYTE)
Data -- 3.4.9 Defining Floating-Point Types -- 3.4.10 A Program That
Adds Variables -- 3.4.11 Little-Endian Order -- 3.4.12 Declaring
Uninitialized Data -- 3.4.13 Section Review -- 3.5 Symbolic Constants
-- 3.5.1 Equal-Sign Directive -- 3.5.2 Calculating the Sizes of Arrays
and Strings -- 3.5.3 EQU Directive -- 3.5.4 TEXTEQU Directive -- 3.5.5
Section Review -- 3.6 64-Bit Programming -- 3.7 Chapter Summary --
3.8 Key Terms -- 3.8.1 Terms -- 3.8.2 Instructions, Operators, and
Directives -- 3.9 Review Questions and Exercises -- 3.9.1 Short Answer
-- 3.9.2 Algorithm Workbench -- 3.10 Programming Exercises --
Chapter 4: Data Transfers, Addressing, and Arithmetic -- 4.1 Data
Transfer Instructions -- 4.1.1 Introduction -- 4.1.2 Operand Types --
4.1.3 Direct Memory Operands -- 4.1.4 MOV Instruction -- 4.1.5
Zero/Sign Extension of Integers -- 4.1.6 LAHF and SAHF Instructions --
4.1.7 XCHG Instruction -- 4.1.8 Direct-Offset Operands -- 4.1.9
Example Program (Moves) -- 4.1.10 Section Review -- 4.2 Addition and
Subtraction -- 4.2.1 INC and DEC Instructions -- 4.2.2 ADD Instruction
-- 4.2.3 SUB Instruction -- 4.2.4 NEG Instruction -- 4.2.5

Implementing Arithmetic Expressions.

4.2.6 Flags Affected by Addition and Subtraction -- 4.2.7 Example
Program -- 4.2.8 Section Review -- 4.3 Data-Related Operators and
Directives -- 4.3.1 OFFSET Operator -- 4.3.2 ALIGN Directive -- 4.3.3
PTR Operator -- 4.3.4 TYPE Operator -- 4.3.5 LENGTHOF Operator --
4.3.6 SIZEOF Operator -- 4.3.7 LABEL Directive -- 4.3.8 Section Review
-- 4.4 Indirect Addressing -- 4.4.1 Indirect Operands -- 4.4.2 Arrays

-- 4.4.3 Indexed Operands -- 4.4.4 Pointers -- 4.4.5 Section Review

-- 4.5 JMP and LOORP Instructions -- 4.5.1 JMP Instruction -- 4.5.2
LOOP Instruction -- 4.5.3 Displaying an Array in the Visual Studio
Debugger -- 4.5.4 Summing an Integer Array -- 4.5.5 Copying a String
-- 4.5.6 Section Review -- 4.6 64-Bit Programming -- 4.6.1 MOV
Instruction -- 4.6.2 64-Bit Version of SumArray -- 4.6.3 Addition and
Subtraction -- 4.6.4 Section Review -- 4.7 Chapter Summary -- 4.8

Key Terms -- 4.8.1 Terms -- 4.8.2 Instructions, Operators, and
Directives -- 4.9 Review Questions and Exercises -- 4.9.1 Short Answer
-- 4.9.2 Algorithm Workbench -- 4.10 Programming Exercises --
Chapter 5: Procedures -- 5.1 Stack Operations -- 5.1.1 Runtime Stack
(32-Bit Mode) -- 5.1.2 PUSH and POP Instructions -- 5.1.3 Section
Review -- 5.2 Defining and Using Procedures -- 5.2.1 PROC Directive
-- 5.2.2 CALL and RET Instructions -- 5.2.3 Nested Procedure Calls --
5.2.4 Passing Register Arguments to Procedures -- 5.2.5 Example:
Summing an Integer Array -- 5.2.6 Saving and Restoring Registers --
5.2.7 Section Review -- 5.3 Linking to an External Library -- 5.3.1
Background Information -- 5.3.2 Section Review -- 5.4 The Irvine32
Library -- 5.4.1 Motivation for Creating the Library -- 5.4.2 Overview

-- 5.4.3 Individual Procedure Descriptions -- 5.4.4 Library Test

Programs -- 5.4.5 Section Review -- 5.5 64-Bit Assembly Programming
-- 5.5.1 The Irvine64 Library.

5.5.2 Calling 64-Bit Subroutines -- 5.5.3 The x64 Calling Convention

-- 5.5.4 Sample Program that Calls a Procedure -- 5.6 Chapter
Summary -- 5.7 Key Terms -- 5.7.1 Terms -- 5.7.2 Instructions,
Operators, and Directives -- 5.8 Review Questions and Exercises --
5.8.1 Short Answer -- 5.8.2 Algorithm Workbench -- 5.9 Programming
Exercises -- Chapter 6: Conditional Processing -- 6.1 Conditional
Branching -- 6.2 Boolean and Comparison Instructions -- 6.2.1 The
CPU Status Flags -- 6.2.2 AND Instruction -- 6.2.3 OR Instruction --
6.2.4 Bit-Mapped Sets -- 6.2.5 XOR Instruction -- 6.2.6 NOT
Instruction -- 6.2.7 TEST Instruction -- 6.2.8 CMP Instruction -- 6.2.9
Setting and Clearing Individual CPU Flags -- 6.2.10 Boolean
Instructions in 64-Bit Mode -- 6.2.11 Section Review -- 6.3

Conditional Jumps -- 6.3.1 Conditional Structures -- 6.3.2 Jcond
Instruction -- 6.3.3 Types of Conditional Jump Instructions -- 6.3.4
Conditional Jump Applications -- 6.3.5 Section Review -- 6.4
Conditional Loop Instructions -- 6.4.1 LOOPZ and LOOPE Instructions
-- 6.4.2 LOOPNZ and LOOPNE Instructions -- 6.4.3 Section Review --
6.5 Conditional Structures -- 6.5.1 Block-Structured IF Statements --
6.5.2 Compound Expressions -- 6.5.3 WHILE Loops -- 6.5.4 Table-
Driven Selection -- 6.5.5 Section Review -- 6.6 Application: Finite-
State Machines -- 6.6.1 Validating an Input String -- 6.6.2 Validating a
Signed Integer -- 6.6.3 Section Review -- 6.7 Conditional Control Flow
Directives -- 6.7.1 Creating IF Statements -- 6.7.2 Signed and
Unsigned Comparisons -- 6.7.3 Compound Expressions -- 6.7.4
Creating Loops with .REPEAT and .WHILE -- 6.8 Chapter Summary --
6.9 Key Terms -- 6.9.1 Terms -- 6.9.2 Instructions, Operators, and
Directives -- 6.10 Review Questions and Exercises -- 6.10.1 Short
Answer -- 6.10.2 Algorithm Workbench -- 6.11 Programming
Exercises.

6.11.1 Suggestions for Testing Your Code -- 6.11.2 Exercise
Descriptions -- Chapter 7: Integer Arithmetic -- 7.1 Shift and Rotate
Instructions -- 7.1.1 Logical Shifts and Arithmetic Shifts -- 7.1.2 SHL
Instruction -- 7.1.3 SHR Instruction -- 7.1.4 SAL and SAR Instructions
-- 7.1.5 ROL Instruction -- 7.1.6 ROR Instruction -- 7.1.7 RCL and RCR
Instructions -- 7.1.8 Signed Overflow -- 7.1.9 SHLD/SHRD Instructions
-- 7.1.10 Section Review -- 7.2 Shift and Rotate Applications -- 7.2.1
Shifting Multiple Doublewords -- 7.2.2 Binary Multiplication -- 7.2.3
Displaying Binary Bits -- 7.2.4 Extracting File Date Fields -- 7.2.5
Section Review -- 7.3 Multiplication and Division Instructions -- 7.3.1
MUL Instruction -- 7.3.2 IMUL Instruction -- 7.3.3 Measuring Program
Execution Times -- 7.3.4 DIV Instruction -- 7.3.5 Signed Integer
Division -- 7.3.6 Implementing Arithmetic Expressions -- 7.3.7 Section
Review -- 7.4 Extended Addition and Subtraction -- 7.4.1 ADC
Instruction -- 7.4.2 Extended Addition Example -- 7.4.3 SBB
Instruction -- 7.4.4 Section Review -- 7.5 ASCII and Unpacked Decimal
Arithmetic -- 7.5.1 AAA Instruction -- 7.5.2 AAS Instruction -- 7.5.3
AAM Instruction -- 7.5.4 AAD Instruction -- 7.5.5 Section Review --

7.6 Packed Decimal Arithmetic -- 7.6.1 DAA Instruction -- 7.6.2 DAS
Instruction -- 7.6.3 Section Review -- 7.7 Chapter Summary -- 7.8 Key
Terms -- 7.8.1 Terms -- 7.8.2 Instructions, Operators, and Directives
-- 7.9 Review Questions and Exercises -- 7.9.1 Short Answer -- 7.9.2
Algorithm Workbench -- 7.10 Programming Exercises -- Chapter 8:
Advanced Procedures -- 8.1 Introduction -- 8.2 Stack Frames -- 8.2.1
Stack Parameters -- 8.2.2 Disadvantages of Register Parameters --
8.2.3 Accessing Stack Parameters -- 8.2.4 32-Bit Calling Conventions
-- 8.2.5 Local Variables -- 8.2.6 Reference Parameters -- 8.2.7 LEA

Instruction.
8.2.8 ENTER and LEAVE Instructions.

Sommario/riassunto Assembly Language for x86 Processors, 7e is suitable for
undergraduate courses in assembly language programming and
introductory courses in computer systems and computer architecture.
Proficiency in one other programming language, preferably Java, C, or
C++, isrecommended. Written specifically for 32- and 64-bit
Intel/Windows platform, this complete and fully updated study of
assembly language teaches students to write and debug programs at
the machine level. This text simplifies and demystifies concepts that
students need to grasp before they can go on to more advanced
computer architecture and operating systems courses. Students put
theory into practice through writing software at the machine level,
creating a memorable experience that gives them the confidence to
work in any OS/machine-oriented environment. Teaching and
Learning Experience This program presents a better teaching and
learning experience-for you and your students. It will help: Teach
Effective Design Techniques: Top-down program design demonstration
and explanation allows students to apply techniques to multiple
programming courses. Put Theory into Practice: Students will write
software at the machine level, preparing them to work in any
OS/machine-oriented environment. Tailor the Text to Fit your Course:
Instructors can cover optional chapter topics in varying order and
depth. Support Instructors and Students: Visit the author's web site
http://asmirvine.com/ for chapter objectives, debugging tools,
supplemental files, a Getting Started with MASM and Visual Studio 2012
tutorial, and more.

