

1. Record Nr.	UNINA9910151856203321
Autore	Schütz Martin J. A
Titolo	Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment // by Martin J. A. Schütz
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
ISBN	3-319-48559-8
Edizione	[1st ed. 2017.]
Descrizione fisica	1 online resource (XVII, 199 p. 51 illus., 8 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	621.3
Soggetti	Quantum computers Spintronics Surfaces (Physics) Interfaces (Physical sciences) Thin films Nanotechnology Nanoscience Nanostructures Quantum Information Technology, Spintronics Surface and Interface Science, Thin Films Nanoscale Science and Technology
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral thesis accepted by Ludwig-Maximilian University, Munchen, Germany."
Nota di bibliografia	Includes bibliographical references.
Nota di contenuto	Introduction -- Superradiance-Like Electron Transport Through a Quantum Dot -- Nuclear Spin Dynamics in Double Quantum Dots -- Universal Quantum Transducers Based on Surface Acoustic Waves -- Outlook.
Sommario/riassunto	This thesis offers a comprehensive introduction to surface acoustic waves in the quantum regime. It addresses two of the most significant technological challenges in developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. Electron spins

confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. To this end, the author pursues novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability.
