1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

UNINA9910148734903321
Vivien Vladimir

Learning Go programming : an insightful guide to learning the Go
programming language / / Vladimir Vivien

Birmingham, England ; ; Mumbai, India : , : Packt Publishing, , 2016
©2016

1-78439-233-2
[1st edition]
1 online resource (340 pages) : illustrations

005.133

Go (Computer program language)
Computer programming

Inglese

Materiale a stampa
Monografia
Includes index.

Cover -- Copyright -- Credits -- About the Author -- About the
Reviewers -- www.PacktPub.com -- Table of Contents -- Preface --
Chapter 1: A First Step in Go -- The Go programming language --
Playing with Go -- No IDE required -- Installing Go -- Source code
examples -- Your first Go program -- Go in a nutshell -- Functions --
Packages -- The workspace -- Strongly typed -- Composite types --
The named type -- Methods and objects -- Interfaces -- Concurrency
and channels -- Memory management and safety -- Fast compilation
-- Testing and code coverage -- Documentation -- An extensive
library -- The Go Toolchain -- Summary -- Chapter 2: Go Language
Essentials -- The Go source file -- Optional semicolon -- Multiple lines
-- Go identifiers -- The blank identifier -- Muting package imports --
Muting unwanted function results -- Built-in identifiers -- Types --
Values -- Functions -- Go variables -- Variable declaration -- The
zero-value -- Initialized declaration -- Omitting variable types -- Short
variable declaration -- Restrictions for short variable declaration --
Variable scope and visibility -- Variable declaration block -- Go
constants -- Constant literals -- Typed constants -- Untyped
constants -- Assigning untyped constants -- Constant declaration
block -- Constant enumeration -- Overriding the default enumeration
type -- Using iota in expressions -- Skipping enumerated values -- Go
operators -- Arithmetic operators -- The increment and decrement



operators -- Go assignment operators -- Bitwise operators -- Logical
Operators -- Comparison operators -- Operator precedence --
Summary -- Chapter 3: Go Control Flow -- The if statement -- The if
statement initialization -- Switch statements -- Using expression
switches -- The fallthrough cases -- Expressionless switches -- Switch
initializer -- Type switches -- The for statements -- For condition.
Infinite loop -- The traditional for statement -- The for range -- The
break, continue, and goto statements -- The label identifier -- The
break statement -- The continue statement -- The goto statement --
Summary -- Chapter 4: Data Types -- Go types -- Numeric types --
Unsigned integer types -- Signed integer types -- Floating point types
-- Complex number types -- Numeric literals -- Boolean type -- Rune
and string types -- The rune -- The string -- Interpreted and raw
string literals -- Pointers -- The pointer type -- The address operator
-- The new() function -- Pointer indirection - accessing referenced
values -- Type declaration -- Type conversion -- Summary -- Chapter
5: Functions in Go -- Go functions -- Function declaration -- The
function type -- Variadic parameters -- Function result parameters --
Named result parameters -- Passing parameter values -- Achieving
pass-by-reference -- Anonymous Functions and Closures -- Invoking
anonymous function literals -- Closures -- Higher-order functions --
Error signaling and handling -- Signaling errors -- Error handling --
The error type -- Deferring function calls -- Using defer -- Function
panic and recovery -- Function panic -- Function panic recovery --
Summary -- Chapter 6: Go Packages and Programs -- The Go package
-- Understanding the Go package -- The workspace -- Creating a
workspace -- The import path -- Creating packages -- Declaring the
package -- Multi-File packages -- Naming packages -- Use globally
unigue namespaces -- Add context to path -- Use short names --
Building packages -- Installing a package -- Package visibility --
Package member visibility -- Importing package -- Specifying package
identifiers -- The dot identifier -- The blank identifier -- Package
initialization -- Creating programs -- Accessing program arguments

-- Building and installing programs -- Remote packages.

Summary -- Chapter 7: Composite Types -- The array type -- Array
initialization -- Declaring named array types -- Using arrays -- Array
length and capacity -- Array traversal -- Array as parameters -- The
slice type -- Slice initialization -- Slice representation -- Slicing --
Slicing a slice -- Slicing an array -- Slice expressions with capacity --
Making a slice -- Using slices -- Slices as parameters -- Length and
capacity -- Appending to slices -- Copying slices -- Strings as slices

-- The map type -- Map initialization -- Making Maps -- Using maps

-- Map traversal -- Map functions -- Maps as parameters -- The struct
type -- Accessing struct fields -- Struct initialization -- Declaring
named struct types -- The anonymous field -- Promoted fields --
Structs as parameters -- Field tags -- Summary -- Chapter 8. Methods,
Interfaces, and Objects -- Go methods -- Value and pointer receivers
-- Objects in Go -- The struct as object -- Object composition -- Field
and method promotion -- The constructor function -- The interface
type -- Implementing an interface -- Subtyping with Go interfaces --
Implementing multiple interfaces -- Interface embedding -- The empty
interface type -- Type assertion -- Summary -- Chapter 9:
Concurrency -- Goroutines -- The go statement -- Goroutine
scheduling -- Channels -- The Channel type -- The send and receive
operations -- Unbuffered channel -- Buffered channel -- Unidirectional
channels -- Channel length and capacity -- Closing a channel --
Writing concurrent programs -- Synchronization -- Streaming data --
Using for...range to receive data -- Generator functions -- Selecting



Sommario/riassunto

from multiple channels -- Channel timeout -- The sync package --
Synchronizing with mutex locks -- Synchronizing access to composite
values -- Concurrency barriers with sync.WaitGroup -- Detecting race
conditions -- Parallelism in Go -- Summary.

Chapter 10: Data 10 in Go -- IO with readers and writers -- The io.
Reader interface -- Chaining readers -- The io.Writer interface --
Working with the io package -- Working with files -- Creating and
opening files -- Function os.OpenFile -- Files writing and reading --
Standard input, output, and error -- Formatted 10 with fmt -- Printing
to io.Writer interfaces -- Printing to standard output -- Reading from
io.Reader -- Reading from standard input -- Buffered 10 -- [Buffered
writers and readers] -- Buffered writers and readers -- Scanning the
buffer -- In-memory IO -- Encoding and decoding data -- Binary
encoding with gob -- Encoding data as JSON -- Controlling JSON
mapping with struct tags -- Custom encoding and decoding --
Summary -- Chapter 11: Writing Networked Services -- The net
package -- Addressing -- The net.Conn Type -- Dialing a connection
-- Listening for incoming connections -- Accepting client connections
-- A TCP API server -- Connecting to the TCP server with telnet --
Connecting to the TCP server with Go -- The HTTP package -- The
http.Client type -- Configuring the client -- Handling client requests
and responses -- A simple HTTP server -- The default server --
Routing requests with http.ServeMux -- The default ServeMux -- A
JSON API server -- Testing the API server with cURL -- An API server
client in Go -- A JavaScript API server client -- Summary -- Chapter 12:
Code Testing -- The Go test tool -- Test file names -- Test
organization -- Writing Go tests -- The test functions -- Running the
tests -- Filtering executed tests -- Test logging -- Reporting failure --
Skipping tests -- Table-driven tests -- HTTP testing -- Testing HTTP
server code -- Testing HTTP client code -- Test coverage -- The cover
tool -- Code benchmark -- Running the benchmark -- Skipping test
functions -- The benchmark report -- Adjusting N.

Comparative benchmarks -- Summary -- Index.

An insightful guide to learning the Go programming language About
This Book Insightful coverage of Go programming syntax, constructs,
and idioms to help you understand Go code effectively Push your Go
skills, with topics such as, data types, channels, concurrency, object-
oriented Go, testing, and network programming Each chapter provides
working code samples that are designed to help reader quickly
understand respective topic Who This Book Is For If you have prior
exposure to programming and are interested in learning the Go
programming language, this book is designed for you. It will quickly
run you through the basics of programming to let you exploit a number
of features offered by Go programming language. What You Will Learn
Install and configure the Go development environment to quickly get
started with your first program. Use the basic elements of the language
including source code structure, variables, constants, and control flow
primitives to quickly get started with Go Gain practical insight into the
use of Go's type system including basic and composite types such as
maps, slices, and structs. Use interface types and techniques such as
embedding to create idiomatic object-oriented programs in Go.
Develop effective functions that are encapsulated in well-organized
package structures with support for error handling and panic recovery.
Implement goroutine, channels, and other concurrency primitives to
write highly-concurrent and safe Go code Write tested and
benchmarked code using Gao’s built test tools Access OS resources by
calling C libraries and interact with program environment at runtime In
Detail The Go programming language has firmly established itself as a



favorite for building complex and scalable system applications. Go
offers a direct and practical approach to programming that let
programmers write correct and predictable code using concurrency
idioms and a full-featured standard library. This is a step-by-step,
practical guide full of real world examples to help you get started with
Go in no time at all. We start off by understanding the fundamentals of
Go, followed by a detailed description of the Go data types, program
structures and Maps. After this, you learn how to use Go concurrency
idioms to avoid pitfalls and create programs that are exact in expected
behavior. Next, you will be familiarized with the tools and libraries that
are available in Go for writing and exercising tests, benchmarking, and
code coverage. Finally,...



