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An insightful guide to learning the Go programming language About
This Book Insightful coverage of Go programming syntax, constructs,
and idioms to help you understand Go code effectively Push your Go
skills, with topics such as, data types, channels, concurrency, object-
oriented Go, testing, and network programming Each chapter provides
working code samples that are designed to help reader quickly
understand respective topic Who This Book Is For If you have prior
exposure to programming and are interested in learning the Go
programming language, this book is designed for you. It will quickly
run you through the basics of programming to let you exploit a number
of features offered by Go programming language. What You Will Learn
Install and configure the Go development environment to quickly get
started with your first program. Use the basic elements of the language
including source code structure, variables, constants, and control flow
primitives to quickly get started with Go Gain practical insight into the
use of Go's type system including basic and composite types such as
maps, slices, and structs. Use interface types and techniques such as
embedding to create idiomatic object-oriented programs in Go.
Develop effective functions that are encapsulated in well-organized
package structures with support for error handling and panic recovery.
Implement goroutine, channels, and other concurrency primitives to
write highly-concurrent and safe Go code Write tested and
benchmarked code using Gao’s built test tools Access OS resources by
calling C libraries and interact with program environment at runtime In
Detail The Go programming language has firmly established itself as a



favorite for building complex and scalable system applications. Go
offers a direct and practical approach to programming that let
programmers write correct and predictable code using concurrency
idioms and a full-featured standard library. This is a step-by-step,
practical guide full of real world examples to help you get started with
Go in no time at all. We start off by understanding the fundamentals of
Go, followed by a detailed description of the Go data types, program
structures and Maps. After this, you learn how to use Go concurrency
idioms to avoid pitfalls and create programs that are exact in expected
behavior. Next, you will be familiarized with the tools and libraries that
are available in Go for writing and exercising tests, benchmarking, and
code coverage. Finally,...



