	UNINA9910144594203321
Autore	Reich S (Stephanie)
Titolo	Carbon nanotubes : basic concepts and physical properties / / S. Reich, C. Thomsen, J. Maultzsch
Pubbl/distr/stampa	Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2004 ©2004
ISBN	1-281-84322-9 9786611843229 3-527-61804-X 3-527-61805-8
Descrizione fisica	1 online resource (226 p.)
Disciplina	620.1/93 620.193
Soggetti	Carbon Nanostructured materials Tubes Electronic books.
Lingua di pubblicazione	Inglese
Lingua di pubblicazione	ligicse
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	Photoluminescence Excitation - (n1, n2) Assignment; 4.4 4-A-diameter Nanotubes; 4.5 Bundles of Nanotubes; 4.6 Excited-state Carrier Dynamics; 4.7 Summary; 5 Electronic Transport 5.1 Room-temperature Conductance of Nanotubes5.2 Electron Scattering; 5.3 Coulomb Blockade; 5.4 Luttinger Liquid; 5.5 Summary; 6 Elastic Properties; 6.1 Continuum Model of Isolated Nanotubes; 6.1.1 Ab-initio, Tight-binding, and Force-constants Calculations; 6.2 Pressure Dependence of the Phonon Frequencies; 6.3 Micro-mechanical Manipulations; 6.4 Summary; 7 Raman Scattering; 7.1 Raman Basics and Selection Rules; 7.2 Tensor Invariants; 7.2.1 Polarized Measurements; 7.3 Raman Measurements at Large Phonon q; 7.4 Double Resonant Raman Scattering; 7.5 Summary; 8 Vibrational Properties
	8.1 Introduction8.2 Radial Breathing Mode; 8.2.1 The RBM in Isolated and Bundled Nanotubes; 8.2.2 Double-walled Nanotubes; 8.3 The Defect-induced D Mode; 8.3.1 The D Mode in Graphite; 8.3.2 The D Mode in Carbon Nanotubes; 8.4 Symmetry of the Raman Modes; 8.5 High-energy Vibrations; 8.5.1 Raman and Infrared Spectroscopy; 8.5.2 Metallic Nanotubes; 8.5.3 Single- and Double-resonance Interpretation; 8.6 Summary; 8.7 What we Can Learn from the Raman Spectra of Single-walled Carbon Nanotubes; Appendix A Character and Correlation Tables of Graphene Appendix B Raman Intensities in Unoriented SystemsAppendix C Fundamental Constants; Bibliography; Index
Sommario/riassunto	Carbon nanotubes are exceptionally interesting from a fundamental research point of view. Many concepts of one-dimensional physics have been verified experimentally such as electron and phonon confinement or the one-dimensional singularities in the density of states; other 1D signatures are still under debate, such as Luttinger-liquid behavior. Carbon nanotubes are chemically stable, mechanically very strong, and conduct electricity. For this reason, they open up new perspectives for various applications, such as nano-transistors in circuits, field- emission displays, artificial muscles, or add