Record MI.	UNINA9910144290803321
Titolo	Enantioselective organocatalysis [[electronic resource]] : reactions and experimental procedures / / edited by Peter I. Dalko
Pubbl/distr/stampa	Weinheim, : Wiley-VCH Chichester, : John Wiley [distributor], 2007
ISBN	1-280-92168-4 9786610921683 3-527-61094-4 3-527-61095-2
Descrizione fisica	1 online resource (563 p.)
Altri autori (Persone)	DalkoPeter I
Disciplina	541.395 547.1395 547.2
Soggetti	Enantioselective catalysis Organic compounds - Synthesis Electronic books.
Lingua di pubblicazione	Indese
Enigua ai pabblicazione	ngiese
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	Strategies; 2.1.3 Mannich Reactions; 2.1.3.1 Mannich-Type Reactions of Aldehyde Donors with Glyoxylate Imines; 2.1.3.2 Mannich-Type Reactions of Aldehyde Donors with Other Preformed Imines 2.1.3.3 Three-Component Mannich Reactions using Aldehyde Donors2. 1.3.4 Mannich-Type Reactions of Ketone Donors; References; 2.2 - Heteroatom Functionalization; 2.2.1 Introduction; 2.2.2 Direct - Amination of Aldehydes and Ketones; 2.2.3 Direct -Amination of - Cyanoacetates and -Dicarbonyl Compounds; 2.2.4 Direct - Oxygenation Reactions of Aldehydes and Ketones; 2.2.5 Direct - Oxygenation Reactions of Aldehydes and Ketones; 2.2.6 Direct - Oxygenation Reactions of Aldehydes and Ketones; 2.2.6.1 Direct - Ioxygenation Reactions of Aldehydes and Ketones; 2.2.6.4 Direct -Chlorination of Aldehydes and Ketones; 2.2.6.4 Direct -Chlorination of -Ketoesters; 2.2.6.5 Direct -Bromination of Aldehydes; 2.2.6.2 Direct -Fluorination of Aldehydes and Ketones; 2.2.6.4 Direct -Chlorination of -Ketoesters; 2.2.6.5 Direct -Bromination of Aldehydes and Ketones; 2.2.7 Direct -Sulfenylation of Aldehydes; 2.2.8 Direct -Selenation of Aldehydes and Ketones; References; 2.3 Direct Conjugate Additions via Enamine Activation; 2.3.1 Introduction; 2.3.2 Factors Determining the Stereoselectivity of the Organocatalytic Conjugate Additions; 2.3.3 Addition of Ketones to Nitroolefins and Alkylidene Malonates; 2.3.3.1 Proline 2.3.3.2 Pyrrolidine Amines and Pyrrolidine Amine Salts as Catalysts for Michael-Type Addition of Ketones to Activated Olefins2.3.3.3 Chiral Primary Amines; 2.3.3.4 Amine/Thiourea Catalysts; 2.3.4 Addition of Aldehydes to Nitroolefins and Alkylidene Malonates; 2.3.4.1 Aminopyrrolidine Catalysts; 2.3.4.2 Addition of Aldehydes and Ketones to Enones; 2.4 Conclusions; References; 3 Iminium Catalysis; 3.1 Introduction; 3.2 The Catalysis Concept of Iminium Activation; 3.3 Development of the "First-Generation" Imidazolidinone Catalysts 3.4 Development of the "Second-Generation" Imidazolidinone Catalysts
Sommario/riassunto	In this reference leaders at the forefront of research provide an insight into one of the hottest topics in organic synthesis, focusing on the most important enantioselective reactions. Clearly structured, each entry begins with a concise introduction, including a mechanistic discussion of the reaction, followed by preparative guidelines for newcomers, such as carefully selected working procedures with critical notes for bench chemists, rules of thumb and tips and tricks.