Recolu MI.	UNINA9910144262803321
Titolo	Continuum solvation models in chemical physics [[electronic resource]] : from theory to applications / / edited by Benedetta Mennucci and Roberto Cammi
Pubbl/distr/stampa	Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2007
ISBN	1-281-31815-9 9786611318154 0-470-51523-6 0-470-51522-8
Descrizione fisica	1 online resource (643 p.)
Altri autori (Persone)	MennucciBenedetta CammiRoberto
Disciplina	541.34 541/.34
Soggetti	Solvation Chemistry, Physical and theoretical Electronic books.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	Continuum Solvation Approaches to Vibrational Properties (Chiara Cappelli); 2.4 Vibrational Circular Dichroism (Philip J. Stephens and Frank J. Devlin) 2.5 Solvent Effects on Natural Optical Activity (Magdalena Pecul and Kenneth Ruud)2.6 Raman Optical Activity (Werner Hug); 2.7 Macroscopic Nonlinear Optical Properties from Cavity Models (Roberto Cammi and Benedetta Mennucci); 2.8 Birefringences in Liquids (Antonio Rizzo); 2.9 Anisotropic Fluids (Alberta Ferrarini); 2.10 Homogeneous and Heterogeneous Solvent Models for Nonlinear Optical Properties (Hans Agren and Kurt V. Mikkelsen); 2.11 Molecules at Surfaces and Interfaces (Stefano Corni and Luca Frediani); 3 Chemical Reactivity in the Ground and the Excited State 3.1 First and Second Derivatives of the Free Energy in Solution (Maurizio Cossi and Nadia Rega)3.2 Solvent Effects in Chemical Equilibria (Ignacio Soteras, Damian Blanco, Oscar Huertas, Axel Bidon- Chanal and F. Javier Luque); 3.3 Transition State Theory and Chemical Reaction Dynamics in Solution (Donald G. Truhlar and Josefredo R. Pliego Jr.); 3.4 Solvation Dynamics (Branka M. Ladanyi); 3.5 The Role of Solvation in Electron Transfer: Theoretical and Computational Aspects (Marshall D. Newton) 3.6 Electron-driven Proton Transfer Processes in the Solvation of Excited States (Wolfgang Domcke and Andrzej L. Sobolewski)3.7 Nonequilibrium Solvation and Conical Intersections (Damien Laage, Irene Burghardt and James T. Hynes); 3.8 Photochemistry in Condensed Phase (Maurizio Persico and Giovanni Granucci); 3.9 Excitation Energy Transfer and the Role of the Refractive Index (Vanessa M. Huxter and Gregory D. Scholes); 3.10 Modelling Solvent Effects in Photoinduced Energy and Electron Transfers: the Electronic Coupling (Carles Curutchet); 4 Beyond the Continuum Approach 4.1 Conformational Sampling in Solution (Modesto Orozco, Ivan Marchan and Ignacio Soteras)
Sommario/riassunto	This book covers the theory and applications of continuum solvation models. The main focus is on the quantum-mechanical version of these models, but classical approaches and combined or hybrid techniques are also discussed.Devoted to solvation models in which reviews of the theory, the computational implementationSolvation continuum models are treated using the different points of view from experts belonging to different research fieldsCan be read at two levels: one, more introductive, and the other, more detailed (and more technical), on specific physical and numerical aspects