Record Nr. Autore Titolo Pubbl/distr/stampa	UNINA9910144100303321 Yoshida Junichi <1952-> Flash chemistry [[electronic resource]] : fast organic synthesis in microsystems / / Jun-ichi Yoshida Hoboken, N.J., : Wiley, 2008
ISBN	1-281-94011-9 9786611940119 0-470-72342-4 0-470-72341-6
Descrizione fisica	1 online resource (248 p.)
Disciplina	547.2 547/.2
Soggetti	Organic compounds - Synthesis Intermediates (Chemistry) Microreactors Organic reaction mechanisms Electronic books.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Torritato	
Livello bibliografico	Monografia
Livello bibliografico	Monografia

1.

	Industry 304.5 Conclusions; References; 5 Methods of Activating Molecules; 5.1 Thermal Activation of Organic Molecules; 5.1.1 High Temperature Reactions; 5.1.2 Flash Vacuum Pyrolysis 5.1.3 Microwave Reactions5.2 Photochemical Activation; 5.3 Electrochemical Activation; 5.4 Chemical Activation; 5.5 Accumulation of Reactive Species; 5.5.1 The Cation-pool Method; 5.6 Continuous Generation of Reactive Species; in a Flow System; 5.7 Interconversion Between Reactive Species; 5.8 Conclusions; References; 6 Control of Extremely Fast Reactions; 6.1 Mixing; 6.1.1 How Does Mixing Take Place?; 6.1.2 Molecular Diffusion and Brownian Motion; 6.1.3 Disguised Chemical Selectivity; 6.1.4 Lowering the Reaction Temperature; 6.1.5 The High Dilution Method; 6.1.6 Micromixing 6.1.7 Friedel-Crafts Alkylation Using anN-acyliminium Ion Pool6.1.8 Micromixing as a Powerful Tool for Flash Chemistry; 6.1.9 Disguised Chemical Selectivity in Competitive Parallel Reactions; 6.2 Temperature Control; 6.2.1 Exothermicity of Fast Reaction; 6.2.2 Hammond's Postulate; 6.2.3 The Friedel-Crafts Reaction; 6.2.4 Solvent; 6.2.5 Heat Transfer; 6.2.6 Precise Temperature Control in Microflow Systems; 6.3 Residence Time Control; 6.3.1 The Discovery of Benzyne. The Concept of Reactive Intermediates; 6.3.2 o -Bromophenyllithi um; 6.4 Conclusions; References 7 Microfluidic Devices and Microflow Systems7.1 Brief History; 7.1.1 Microflow Systems for Chemical Analysis; 7.1.2 Microflow Systems; 7.3 Microstructured Fluidic Devices; 7.3.1 Microflow Systems; 7.3.2 Microtube Reactors; 7.3.3 Micromixer; 7.3.4 Passive Micromixers; 7.3.5 Microheat Exchanger; 7.3.6 Photochemical Microflow Reactor; 7.3.7 Electrochemical Microflow Reactor; 7.3.8 Catalyst-containing Microflow Reactor; 7.3.9 Microflow Reactor; 7.4 Conclusions; References 8 Applications of Flash Chemistry in Organic Synthesis
Sommario/riassunto	Have you ever wished you could speed up your organic syntheses without losing control of the reaction? Flash Chemistry is a new concept which offers an integrated scheme for fast, controlled organic synthesis. It brings together the generation of highly reactive species and their reactions in Microsystems to enable highly controlled organic syntheses on a preparative scale in timescales of a few seconds or less. Flash Chemistry: Fast Organic Synthesis in microsystems is the first book to describe this exciting new technique, with chapters covering:an introduction to f