Record Nr.	UNINA9910143983303321
Titolo	High-throughput screening in drug discovery [[e-book] /] / edited by Jorg Huser
Pubbl/distr/stampa	Weinheim, : Wiley-VCH [Chichester, : John Wiley, distributor], c2006
ISBN	1-280-72366-1 9786610723669 3-527-60932-6 3-527-60936-9
Descrizione fisica	1 online resource (371 p.)
Collana	Methods and principles in medicinal chemistry ; ; v. 35
Classificazione	44.38
Altri autori (Persone)	HuserJorg
Disciplina	615.19 615.1900285
Soggetti	High throughput screening (Drug development) Pharmaceutical chemistry Electronic books.
Lingua di pubblicazione	
Engua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

	Laboratory Automation; 2.6 From Target Selection to Confirmed Hits - the HTS Workflow and its Vocabulary 2.7 Separating Specific Modulators from Off-Target Effects2.8 Data Analysis and Screening Results; 2.9 Conclusions; Part II Automation Technologies; 3 Tools and Technologies that Facilitate Automated Screening; 3.1 Introduction - the Necessity to Automate; 3.1.1 Compound Libraries; 3.1.2 Targets and Data Points; 3.1.3 Main Issues Facing HTS Groups Today; 3.1.4 Benefits of Miniaturization; 3.1.5 Benefits of Automated HTS; 3.1.6 Screening Strategies; 3.1.7 Ultra HTS (UHTS); 3.2 Sample Carriers; 3.2.1 A Brief History of the Microplate; 3.2.2 Microplate Usage Today; 3.2.3 Microplate Arrays 3.2.4 Non-microplate Alternatives3.2.4.1 Labchips; 3.2.4.2 LabCDs; 3.2.4.3 LabBrick; 3.2.4.4 Arrayed Compound Screening; 3.3 Liquid Handling Tools; 3.3.1 Main Microplate Dispense Mechanisms; 3.3.1.1 Pin Tools; 3.3.1.2 Air and Positive Displacement; 3.3.1.3 Peristaltic; 3.3.1.4 Solenoid-syringe; 3.3.1.5 Solenoid-pressure bottle; 3.3.1.6 Capillary Sipper; 3.3.1.7 Piezoelectric; 3.3.1.8 Acoustic Transducer; 3.3.2 HTS Liquid Handling Applications and Dispensing Technologies Used; 3.3.2.1 Bulk Reagent and Cell Addition; 3.3.2.2 Compound Reformatting and Nanoliter Dispensing 3.3.2.3 Cherry Picking and Serial Dilution3.3.2.4 Microplate Washing; 3.4.0 Etection Technologies; 3.4.1 Main Detection Modalities Used in HTS; 3.4.2 Plate Readers; 3.4.3 Plate Imagers; 3.4.3.1 Macro-imaging; 3.4.3.2 Micro-imaging; 3.4.4 Dispense and Read Devices; 3.4.5 Other Detection Technologies; 3.4.6 Automation of Detection Technologies; 3.4.7 Potential Sources of Reading Error; 3.5 Laboratory Robotics; 3.5.1 Traditional Workstations; 3.5.2 Robotic Sample Processors; 3.5.3 Plate Storage Devices; 3.5.4 Plate Moving Devices; 3.5.5 Fully Integrated Robotic Systems; 3.5.4 Plate Moving Devices; 3.5.5 Fully Integrated Robotic Systems; 3.5.4 Plate Workstations 3.5.7 Automated Cell Culture Systems
Sommario/riassunto	Backed by leading authorities, this is a professional guide to successful compound screening in pharmaceutical research and chemical biology, including the chemoinformatic tools needed for correct data evaluation. Chapter authors from leading pharmaceutical companies as well as from Harvard University discuss such factors as chemical genetics, binding, cell-based and biochemical assays, the efficient use of compound libraries and data mining using cell-based assay results.For both academics and professionals in the pharma and biotech industries working on small molecule screening.