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A systematic introduction to partial differentialequations and modern
finite element methods for their efficient numerical solutionPartial
Differential Equations and the Finite Element Method provides a much-
needed, clear, and systematic introduction to modern theory of partial
differential equations (PDEs) and finite element methods (FEM). Both
nodal and hierachic concepts of the FEM are examined. Reflecting the
growing complexity and multiscale nature of current engineering and
scientific problems, the author emphasizes higher-order finite element
methods such as the spectral


