Record Nr. Titolo	UNINA9910143316403321 Green reaction media in organic synthesis [[electronic resource] /] /
Pubbl/distr/stampa	edited by Koichi Mikami Ames, Iowa, : Blackwell Pub., 2005
ISBN	1-280-74856-7 9786610748563 0-470-98877-0 1-4051-7245-2
Descrizione fisica	1 online resource (202 p.)
Altri autori (Persone)	MikamiKoichi
Disciplina	547.2 660.2844 660/.2844
Soggetti	Solvents - Environmental aspects Organic compounds - Synthesis - Environmental aspects Green products Electronic books.
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Materiale a stampa
	Materiale a stampa Monografia
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

	cross-coupling reactions; 2.3.6 The Diels-Alder reaction; 2.3.7 Biocatalysis in ionic liquids; 2.4 The future of ionic liquids; 2.5 Experimental part; 2.5.1 Preparation of [bmim][Cl] 2.5.2 Preparation of [bmim][PF6]2.5.3 Preparation of a chiral imidazolium ionic liquid; 2.5.4 Enantioselective hydrogenation of methyl acetoacetate; 2.5.5 Epoxidation of 2,2-dimethylchromene; 2.5.6 Mizoroki-Heck reaction between butyl acrylate and iodobenzene under microwave irradiation; 2.5.7 Diphenylacetylene by the Sonogashira coupling reaction; References; 3 Fluorous solvents; 3.1 Historical background; 3.2 Physical properties; 3.2.1 Key design elements in fluorous/organic liquid biphasic reactions; 3.2.2 Commercial availability; 3.2.3 Polarity; 3.2.4 Solute solubilities 3.2.5 Fluorous solvent miscibilities3.2.6 Partition coefficients and fluorophilicities; 3.2.7 Toxicity and environmental issues; 3.3 Applications as reaction media; 3.3.1 Fluorous catalysts for fluorous biphasic systems; 3.3.1.1 Hydroformylation; 3.3.1.4 Hydrogenation; 3.3.1.3 Catalytic hydroboration and hydrosilylation; 3.3.1.4 Catalytic oxidation reactions; 3.3.1.5 Coupling reactions; 3.3.1.6 Fluorous acid and base catalysts; 3.3.2 Enantioselective catalysts for fluorous biphasic systems; 3.3.2.1 Reduction; 3.3.2.2 Epoxidation; 3.3.2.3 Protonation 3.3.2.4 Et2Zn or Et3Al addition to aldehydes3.3.3 Heavy fluorous reagents; 3.3.3.1 Fluorous tin hydrides; 3.3.3.6 Other fluorous reagents; 3.3.3.5 Fluorous sulfide and sulfoxide; 3.3.3.6 Other fluorous reagents; 3.3.4 Heavy fluorous protecting groups; 3.3.4.1 Trifluoroalkylsilyl protecting group; 3.3.4.2 Fluorous alcohol protective group; 3.3.4.3 Fluorous carboxylic acid protecting group; 3.4. Light fluorous compounds and fluorous silica gel; 3.4.1 Heavy and light fluorous molecules and separation strategy 3.4.2 Solid-phase extractions with fluorous silica gel
Sommario/riassunto	Green, sustainable chemistry involves the designing of chemical processes with a view to reducing or even eliminating the use and production of hazardous materials. Recent endeavors have focused on limiting the use of organic solvents and replacing them with new, environmentally benign media. The chemical industry is interested in these cost-effective, alternative solvents and processes. This book provides a broad overview of the three most commonly used green reaction media. Directed at synthetic organic chemists working in academic and industrial laboratories, it will also ser