	UNINA9910141386903321
Autore	Ruban Alexander (Alexander V.)
Titolo	The photosynthetic membrane [[electronic resource]] : molecular mechanisms and biophysics of light harvesting / / Alexander Ruban
Pubbl/distr/stampa	Chichester, West Sussex, : Wiley, 2012, c2013
ISBN	1-118-44760-3
	1-119-96054-1
	1-118-44762-X
	1-118-44761-1
Descrizione fisica	1 online resource (297 p.)
Disciplina	572.46
	572/.46
Soggetti	Photosynthesis
	Photosynthetic pigments
	Light absorption
Lingua di pubblicazione	
Lingua di pubblicazione	Inglese Materiale a stampa
Lingua di pubblicazione Formato Livello bibliografico	Inglese Materiale a stampa Monografia
Lingua di pubblicazione Formato Livello bibliografico Note generali	Inglese Materiale a stampa Monografia Description based upon print version of record.
Lingua di pubblicazione Formato Livello bibliografico Note generali Nota di bibliografia	Inglese Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	 the Photosynthetic Proteins: Enabling Functions and Adaptations; 3.3.1 Oligomerization and Clustering of Photosynthetic Membrane Proteins; 3.3.2 Protein Mobility; Reference; Bibliography 4 Popular Methods and Approaches to Study Composition, Structure and Functions of the Photosynthetic Membrane4.1 Biochemistry and Molecular Biology Approaches; 4.1.1 Isolation of Chloroplasts and Subchloroplast Particles; 4.1.2 Isolation of Membrane Protein Complexes; 4.1.3 Analysis of Lipids and Pigments; 4.1.4 Protein Expression and Reconstitution In Vitro; 4.1.5 Reconstitution of Membrane Proteins in Liposomes; 4.1.6 Mutagenesis and Transgenic Manipulations; 4.2 Visualization Techniques; 4.2.1 Optical Microscopy; 4.2.2 Electron Microscopy (EM); 4.2.3 Atomic Force Microscopy (AFM) 4.2.4 Crystallography Methods4.3 Function Probing Methods; 4.3.1 Absorption-Based Approaches; 4.3.2 Raman Spectroscopy; 4.3.3 Fluorescence-Based Approaches; References; Bibliography; 5 Primary Processes of the Light Phase of Photosynthesis: Principles of Light Harvesting in Antennae; 5.1 The Nature of Light; 5.2 Absorption of Light by Molecules; 5.3 Fate of Absorbed Light Energy; 5.4 The Need for the Photosynthetic Antenna Pigments; 5.5.1 Chlorophylls; 5.5.2 Xanthophylls 5.6 Variety and Classification of Photosynthetic Antennae5.7 Principles of Light Harvesting Antennae: On the Path of Discoveries; 6.1 Discovery and Primary Characterization of the Higher Plant Antenna Complex; 6.2 Development of Isolation Methods: Intactness, Purity and Quantity; 6.3 LHCII Crystallography: The Beginnings; 6.4 Revealing the Atomic Resolution Structure of LHCII Antenna Complexes 6.4.1 Key Biochemical and Spectroscopic Advances that Aided the Emergence of the Current Atomic LHCIIb Structure
Sommario/riassunto	The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the ""photosynthetic membrane""). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular M