1. Record Nr. UNINA9910140010803321 Autore Scott Peter J. H. Titolo Linker strategies in solid-phase organic synthesis [[electronic resource] /] / edited by Peter J. H Scott Hoboken, NJ,: Wiley, 2009 Pubbl/distr/stampa **ISBN** 1-282-33153-1 9786612331534 0-470-74904-0 0-470-74905-9 Descrizione fisica 1 online resource (707 p.) Altri autori (Persone) ScottPeter J. H 547.2 Disciplina Soggetti Solid-phase synthesis Organic compounds - Synthesis Electronic books. Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia Note generali Description based upon print version of record. Nota di bibliografia Includes bibliographical references and index Includes bibliographical references and index. Nota di contenuto Linker Strategies In Solid-Phase Organic Synthesis; Contents; Foreword; Preface; List of Contributors; About the Editor; Abbreviations; I INTRODUCTION; 1 General Overview; 1.1 Introduction, background and pivotal discoveries; 1.2 Fundamentals of conducting solid-phase organic chemistry; 1.2.1 Apparatus; 1.2.2 Typical solid supports; 1.2.3 Fluorous supports; 1.2.4 Linker strategies; 1.2.5 Challenges; 1.2.6 Linker groups; 1.3 Concluding comments; 1.4 Personal perspective and testimony: solid-phase Mannich chemistry: References: II TRADITIONAL LINKER UNITS FOR SOLID-PHASE ORGANIC SYNTHESIS 2 Electrophile Cleavable Linker Units2.1 Introduction; 2.2 Resins for use with electrophilic linkers; 2.3 Electrophile cleavable linkers; 2.3.1 Acid labile linkers; 2.4 Conclusion; References; 3 Nucleophile Cleavable Linker Units; 3.1 Introduction; 3.2 Linker units; 3.3 Nucleophilic labile linker units; 3.3.1 Cleavage by saponification or basic transesterification; 3.3.2 Cleavage by aminolysis; 3.3.3 Cleavage by

hydrazinolysis; 3.3.4 Cleavage by Hydroxylamines; 3.3.5 Cleavage by other nucleophiles; 3.3.6 Linker cleavage by intramolecular nucleophilic

reaction; 3.4 Conclusion; References

4 Cyclative Cleavage as a Solid-Phase Strategy4.1 Introduction; 4.2 C-N bond formation; 4.2.1 Cyclopeptides and cyclodepsipeptides; 4.2.2 Heterocycles, five-membered ring formation; 4.2.3 Heterocycles, sixand seven-membered ring formation; 4.3 C-O bond formation; 4.4 C-C bond formation; 4.5 Conclusion; References; 5 Photolabile Linker Units; 5.1 Introduction: 5.2 Linkers based on the ortho-nitrobenzyloxy function: 5.3 Linkers based on the ortho-nitrobenzylamino function: 5.4 Linkers based on the -substituted ortho-nitrobenzyl group; 5.5 Linkers based on the ortho-nitroveratryl group 5.6 Linkers based on the phenacyl group5.7 Linkers based on the paramethoxyphenacyl group; 5.8 Linkers based on the benzoin group; 5.9 Linkers based on the pivaloyl group; 5.10 Traceless linkers; 5.11 Other types of photolabile linker units; 5.12 Conclusion; References; 6 Safety-Catch Linker Units; 6.1 Introduction; 6.2 Activation of a carbonyl group by the inductive effect (I-) of an adjacent substituent; 6.2.1 Kennertype safety-catch linker; 6.2.2 N-boc-activated safety-catch linker; 6.2.3 Sulfide/sulfone safety-catch linker; 6.2.4 Dpr(phoc) safety-catch linker

6.3 Activation by the mesomeric effect (M-) of the -X-Y=Z moiety adjacent to a carbonyl group6.3.1 Carbonyl activation by oxidative aromatization; 6.3.2 Carbonyl activation by indole ring formation; 6.3.3 Benzyl/phenyl-hydrazide safety-catch linker; 6.3.4 Dehydration activated safety-catch linker; 6.4 Activation by the positive mesomeric effect (M+) of the -X-Y=Z moiety adjacent to a N-acyl or O-alkyl group; 6.4.1 Benzhydryl-based safety-catch linker; 6.4.2 Indole-based safety-catch linker; 6.4.3 Nitrobenzyl alcohol-based safety-catch linker; 6.5 Aromatic SNAr substitution 6.6 Fragmentation by -elimination

Sommario/riassunto

Linker design is an expanding field with an exciting future in state-of-the-art organic synthesis. Ever-increasing numbers of ambitious solution phase reactions are being adapted for solid-phase organic chemistry and to accommodate them, large numbers of sophisticated linker units have been developed and are now routinely employed in solid-phase synthesis. Linker Strategies in Solid-Phase Organic Synthesis guides the reader through the evolution of linker units from their genesis in solid-supported peptide chemistry to the cutting edge diversity linker units that are defining a new