Record Nr.	UNINA9910139942803321
Autore	Lee Kong-Aik
Titolo	Subband adaptive filtering [[electronic resource]] : theory and implementation / / by Kong-Aik Lee, Woon-Seng Gan, Sen M. Kuo
Pubbl/distr/stampa	Hoboken, NJ, : J. Wiley, 2009
ISBN	1-282-23729-2 9786612237294 0-470-74597-5 0-470-74598-3
Descrizione fisica	1 online resource (346 p.)
Altri autori (Persone)	GanWoon-Seng KuoSen M (Sen-Maw)
Disciplina	621.3815 621.3815324
Soggetti	Adaptive filters Adaptive signal processing Radio frequency modulation, Narrow-band Electronic books.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	 2.5.1 Design example; 2.6 DFT filter banks; 2.6.1 Design example; 2.7 A note on cosine modulation; 2.8 Summary; References; 3 Second- order characterization of multirate filter banks 3.1 Correlation-domain formulation3.1.1 Critical decimation; 3.2 Cross spectrum; 3.2.1 Subband spectrum; 3.3 Orthogonality at zero lag; 3.3.1 Paraunitary condition; 3.4 Case study: Subband orthogonality of cosine-modulated filter banks; 3.4.1 Correlation-domain analysis; 3.4.2 MATLAB simulations; 3.5 Summary; References; 4 Subband adaptive filters; 4.1 Subband adaptive filtering; 4.1.1 Computational reduction; 4.1.2 Spectral dynamic range; 4.2 Subband adaptive filter structures; 4.2.1 Open-loop structures; 4.2.2 Closed-loop structures; 4.3 Aliasing, band-edge effects and solutions 4.3.1 Aliasing and band-edge effects 4.3.2 Adaptive cross filters; 4.3.3 Multiband-structured SAF; 4.3.4 Closed-loop delayless structures; 4.4 Delayless subband adaptive filters; 4.4.1 Closed-loop configuration; 4.4.2 Open-loop configuration; 4.4.3 Weight transformation; 4.4.4 Computational requirements; 4.5 MATLAB examples; 4.5.1 Aliasing and band-edge effects; 4.5.2 Delayless alias-free SAFs; 4.6 Summary; References; 5 Critically sampled and oversampled subband structures; 5.1 Variants of critically sampled subband adaptive filters; 5.1.1 SAF with the affine projection algorithm 5.1.2 SAF with variable step sizes5.1.3 SAF with selective coefficient update; 5.2 Oversampled and nonuniform subband adaptive filters; 5.2.1 Oversampled and nonuniform subband adaptive filters; 5.3.2 Single-sideband modulation filter banks; 5.3.3 Filter design criteria for DFT filter banks; 5.3.4 Quadrature mirror filter banks; 5.3.5 Pseudo-quadrature mirror filter banks; 5.3.6 Conjugate quadrature filter banks; 5.4 Case study: Proportionate subband adaptive filtering 5.4.1 Multiband structure with proportionate adaptation
Sommario/riassunto	Subband adaptive filtering is rapidly becoming one of the most effective techniques for reducing computational complexity and improving the convergence rate of algorithms in adaptive signal processing applications. This book provides an introductory, yet extensive guide on the theory of various subband adaptive filtering techniques. For beginners, the authors discuss the basic principles that underlie the design and implementation of subband adaptive filters. For advanced readers, a comprehensive coverage of recent developments, such as multiband tap-weight adaptation, delayless architectures,