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Shape and Shape Theory D. G. Kendall Churchill College, University of
Cambridge, UK D. Barden Girton College, University of Cambridge, UK
T. K. Carne King's College, University of Cambridge, UK H. Le University
of Nottingham, UK The statistical theory of shape is a relatively new
topic and is generating a great deal of interest and comment by
statisticians, engineers and computer scientists. Mathematically, 'shape'
is the geometrical information required to describe an object when
location, scale and rotational effects are removed. The theory was
pioneered by Professor David Kendall to solve p



