Recolu NI.	UNINA9910139802703321
Autore	Voldman Steven H
Titolo	ESD [[electronic resource]] : failure mechanisms and models / / Steven H. Voldman
Pubbl/distr/stampa	Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
ISBN	1-282-23713-6 9786612237133 0-470-74725-0 0-470-74726-9
Descrizione fisica	1 online resource (410 p.)
Disciplina	621.381
Soggetti	Semiconductors - Failures Integrated circuits - Protection Integrated circuits - Testing Integrated circuits - Reliability Electric discharges Electrostatics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Libra Harla Ia Ia Rana di Ang	Managurafia
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Note generali Nota di bibliografia	Description based upon print version of record. Includes bibliographical references and index.

1.

	 1.2 ESD FAILURE: HOW DO MICRO-ELECTRONIC DEVICES FAIL?; 1.2.1 ESD Failure: How Do Metallurgical Junctions Fail?; 1.2.2 ESD Failure: How Do Insulators Fail?; 1.2.3 ESD Failure: How Do Metals Fail? 1.3 SENSITIVITY OF SEMICONDUCTOR COMPONENTS 1.3.1 ESD Sensitivity as a Function of Materials; 1.3.2 ESD Sensitivity as a Function of Semiconductor Devices; 1.3.3 ESD Sensitivity as a Function of Product Type; 1.3.4 ESD and Technology Scaling; 1.3.5 ESD Technology Roadmap; 1.4 HOW DO SEMICONDUCTOR CHIPS FAILARE THE FAILURES RANDOM OR SYSTEMATIC?; 1.5 CLOSING COMMENTS AND SUMMARY; PROBLEMS; REFERENCES; 2 Failure Analysis Tools, Models, and Physics of Failure; 2.1 FA TECHNIQUES FOR EVALUATION OF ESD EVENTS; 2.2 FA TOOLS; 2.2.1 Optical Microscope; 2.2.2 Scanning Electron Microscope 2.2.3 Transmission Electron Microscope 2.2.4 Emission Microscope; 2.2.5 Thermally Induced Voltage Alteration; 2.2.6 Superconducting Quantum Interference Device Microscope; 2.2.7 Atomic Force Microscope; 2.2.8 The 2-D AFM; 2.2.9 Picosecond Current Analysis Tool; 2.3.10 Transmission Line PulsePico second Current Analysis Tool; 2.3.2 Machine Model; 2.3.3 Cassette Model; 2.3.4 Socketed Device Model; 2.3.5 Charged Board Model; 2.3.6 Cable Discharge Event; 2.3.7 TEC System-Level Pulse Model; 2.3.6 Uvery Fast Transmission Line Pulse (VF-TLP) Model; 2.3.11 Ultra-fast Transmission Line Pulse (VF-TLP) Model; 2.3.11 Ultra-fast Transmission Line Pulse (VF-TLP) Model; 2.4.2 ELECTRO-THERMAL PHYSICAL MODELS; 2.4.1 Tasca Model; 2.4.5 Arkihpov, Astvatsaturyan, Godovosyn, and Rudenko Model; 2.4.5 Arkihpov, Astvatsaturyan, Godovosyn, and Rudenko Model; 2.4.6 Dwyer, Franklin, and Campbell Model; 2.4.7 Vlasov- Sinkevitch Model; 2.5 STATISTICAL MODELS FOR ESD PREDICTION; 2.6 CLOSING COMMENTS AND SUMMARY; PROBLEMS; REFERENCES; 3 CMOS Failure Mechanisms; 3.1 TABLES OF CMOS ESD FAILURE MECHANISMS 3.2 LOCOS ISOLATION-DEFINED CMOS
Sommario/riassunto	Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics. This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit method