Record Nr.	UNINA9910139764203321
Autore	Mahnke R (Reinhard)
Titolo	Physics of stochastic processes : how randomness acts in time / / by Reinhard Mahnke, Jevgenijs Kaupuzs, Ihor Lubashevsky
Pubbl/distr/stampa	Weinheim, : Wiley-VCH, 2009
ISBN	1-282-27959-9 9786612279591 3-527-62609-3 3-527-62610-7
Descrizione fisica	1 online resource (450 p.)
Collana	Physics textbook
Classificazione	417.1 519.23
Altri autori (Persone)	KaupuzsJevgenijs Lubashevskiil. A (Igor' Alekseevich)
Disciplina	519.23
Soggetti	Random measures Statistical physics Stochastic processes
Lingua di pubblicazione	Inglese
	0
Formato	Materiale a stampa
Formato Livello bibliografico	
	Materiale a stampa
Livello bibliografico	Materiale a stampa Monografia

1.

	 2.6.1 Moments of the Walker Distribution and the Generating Function; 2.6.2 Master Equation for Lattice Random Walks and its General Solution; 2.6.3 Limit of Multiple-Step Random Walks on Small Time Scales 2.6.4 Continuum Limit and a Boundary Model2.7 Boundary Condition for the Backward Fokker-Planck Equation; 2.8 Boundary Condition for the Forward Fokker-Planck Equation; 2.9 Concluding Remarks; 2.10 Exercises; Part II Physics of Stochastic Processes; 3.1 Markovian Stochastic Processes; 3.2 The Master Equation; 3.3 One-Step Processes in Finite Systems; 3.4 The First-Passage Time Problem; 3.5 The Poisson Process in Closed and Open Systems; 3.6 The Two-Level System; 3.7 The Three-Level System; 3.8 Exercises; 4 The Fokker-Planck Equation; 4.2 Bounded Drift-Diffusion in One Dimension4.3 The Escape Problem and its Solution; 4.4 Derivation of the Fokker-Planck Equation; 4.5 Fokker-Planck Dynamics in Finite State Space; 4.6 Fokker-Planck Dynamics in Finite State Space; 4.7 Alternative Method of Solving the Fokker-Planck Equation; 4.8 Exercises; 5.7 The Langevin Equation; 5.1 A System of Many Brownian Particles; 5.2 A Traditional View of the Langevin Equation; 5.3 Additive White Noise; 5.4 Derucker Stochastic Differential Equations 5.7 The Standard Wiener Process5.8 Arithmetic Brownian Motion; 5.9 Geometric Brownian Motion; 5.10 Exercises; Part III Applications; 6 One-Dimensional Diffusion; 6.1 Random Walk on a Line and Diffusion: Main Results; 6.2 A Drunken Sailor as Random Walker; 6.3 The Mirror Method and Time Lag; 6.6 Maximum Value Distribution; 6.7 The Mirror Method and Time Lag; 6.6 Maximum Value Distribution; 6.7 Summary of Results for Diffusion in a Finite Interval;
Sommario/riassunto	Based on lectures given by one of the authors with many years of experience in teaching stochastic processes, this textbook is unique in combining basic mathematical and physical theory with numerous simple and sophisticated examples as well as detailed calculations. In addition, applications from different fields are included so as to strengthen the background learned in the first part of the book. With its exercises at the end of each chapter (and solutions only available to lecturers) this book will benefit students and researchers at different educational levels. Solutions manual