1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato
Livello bibliografico

Nota di contenuto

UNINA9910132468303321
Abelson Harold

Structure and interpretation of computer programs / / Harold Abelson
and Gerald Jay Sussman, with Julie Sussman ; foreword by Alan J. Perlis

London :, : MIT Press, , [1996]
©1996

[Second edition.]
1 online resource (xxiii, 657 pages) : illustrations

005.13/3

Computer programming
LISP (Computer program language)

Inglese
Materiale a stampa
Monografia

Foreword xi -- Preface to the Second Edition xv -- Preface to the First
Edition xvii -- Acknowledgments xxi -- 1 Building Abstractions with
Procedures 1 (78) -- 1.1 The Elements of Programming 4 (27) -- 1.1.1
Expressions 5 (2) -- 1.1.2 Naming and the Environment 7 (2) -- 1.1.3
Evaluating Combinations 9 (2) -- 1.1.4 Compound Procedures 11 (2) --
1.1.5 The Substitution Model for Procedure Application 13 (4) -- 1.1.6
Conditional Expressions and Predicates 17 (4) -- 1.1.7 Example: Square
Roots by Newton's Method 21 (5) -- 1.1.8 Procedures as Black-Box
Abstractions 26 (5) -- 1.2 Procedures and the Processes They Generate
31 (25) -- 1.2.1 Linear Recursion and Iteration 32 (5) -- 1.2.2 Tree
Recursion 37 (5) -- 1.2.3 Orders of Growth 42 (2) -- 1.2.4
Exponentiation 44 (4) -- 1.2.5 Greatest Common Divisors 48 (2) --

1.2.6 Example: Testing for Primality 50 (6) -- 1.3 Formulating
Abstractions with Higher-Order Procedures 56 (23) -- 1.3.1 Procedures
as Arguments 57 (5) -- 1.3.2 Constructing Procedures Using Lambda
62 (4) -- 1.3.3 Procedures as General Methods 66 (6) -- 1.3.4
Procedures as Returned Values 72 (7) -- 2 Building Abstractions with
Data 79 (138) -- 2.1 Introduction to Data Abstraction 83 (14) -- 2.1.1
Example: Arithmetic Operations for Rational Numbers 83 (4) -- 2.1.2
Abstraction Barriers 87 (3) -- 2.1.3 What Is Meant by Data? 90 (3) --
2.1.4 Extended Exercise: Interval Arithmetic 93 (4) -- 2.2 Hierarchical
Data and the Closure Property 97 (45) -- 2.2.1 Representing Sequences



99 (8) -- 2.2.2 Hierarchical Structures 107 (6) -- 2.2.3 Sequences as
Conventional Interfaces 113 (13) -- 2.2.4 Example: A Picture Language
126 (16) -- 2.3 Symbolic Data 142 (27) -- 2.3.1 Quotation 142 (3) --
2.3.2 Example: Symbolic Differentiation 145 (6) -- 2.3.3 Example:
Representing Sets 151 (10) -- 2.3.4 Example: Huffman Encoding Trees
161 (8) -- 2.4 Multiple Representations for Abstract Data 169 (18) --
2.4.1 Representations for Complex Numbers 171 (4) -- 2.4.2 Tagged
data 175 (4) -- 2.4.3 Data-Directed Programming and Additivity 179

(8) -- 2.5 Systems with Generic Operations 187 (30) -- 2.5.1 Generic
Arithmetic Operations 189 (4) -- 2.5.2 Combining Data of Different
Types 193 (9) -- 2.5.3 Example: Symbolic Algebra 202 (15) -- 3
Modularity, Objects, and State 217 (142) -- 3.1 Assignment and Local
State 218 (18) -- 3.1.1 Local State Variables 219 (6) -- 3.1.2 The
Benefits of Introducing Assignment 225 (4) -- 3.1.3 The Costs of
Introducing Assignment 229 (7) -- 3.2 The Environment Model of
Evaluation 236 (15) -- 3.2.1 The Rules for Evaluation 238 (3) -- 3.2.2
Applying Simple Procedures 241 (3) -- 3.2.3 Frames as the Repository
of Local State 244 (5) -- 3.2.4 Internal Definitions 249 (2) -- 3.3
Modeling with Mutable Data 251 (46) -- 3.3.1 Mutable List Structure
252 (9) -- 3.3.2 Representing Queues 261 (5) -- 3.3.3 Representing
Tables 266 (7) -- 3.3.4 A Simulator for Digital Circuits 273 (12) --

3.3.5 Propagation of Constraints 285 (12) -- 3.4 Concurrency: Time Is
of the Essence 297 (19) -- 3.4.1 The Nature of Time in Concurrent
Systems 298 (5) -- 3.4.2 Mechanisms for Controlling Concurrency 303
(13) -- 3.5 Streams 316 (43) -- 3.5.1 Streams Are Delayed Lists 317 (9)
-- 3.5.2 Infinite Streams 326 (8) -- 3.5.3 Exploiting the Stream
Paradigm 334 (12) -- 3.5.4 Streams and Delayed Evaluation 346 (6) --
3.5.5 Modularity of Functional Programs and Modularity of Objects 352
(7) -- 4 Metalinguistic Abstraction 359 (132) -- 4.1 The Metacircular
Evaluator 362 (36) -- 4.1.1 The Core of the Evaluator 364 (4) -- 4.1.2
Representing Expressions 368 (8) -- 4.1.3 Evaluator Data Structures
376 (5) -- 4.1.4 Running the Evaluator as a Program 381 (3) -- 4.1.5
Data as Programs 384 (4) -- 4.1.6 Internal Definitions 388 (5) -- 4.1.7
Separating Syntactic Analysis from Execution 393 (5) -- 4.2 Variations
on a Scheme Lazy Evaluation 398 (14) -- 4.2.1 Normal Order and
Applicative Order 399 (2) -- 4.2.2 An Interpreter with Lazy Evaluation
401 (8) -- 4.2.3 Streams as Lazy Lists 409 (3) -- 4.3 Variations on a
Scheme Nondeterministic Computing 412 (26) -- 4.3.1 Amb and
Search 414 (4) -- 4.3.2 Examples of Nondeterministic Programs 418 (8)
-- 4.3.3 Implementing the Amb Evaluator 426 (12) -- 4.4 Logic
Programming 438 (53) -- 4.4.1 Deductive Information Retrieval 441
(12) -- 4.4.2 How the Query System Works 453 (9) -- 4.4.3 Is Logic
Programming Mathematical Logic? 462 (6) -- 4.4.4 Implementing the
Query System 468 (23) -- 5 Computing with Register Machines 491
(120) -- 5.1 Designing Register Machines 492 (21) -- 5.1.1 A Language
for Describing Register Machines 494 (5) -- 5.1.2 Abstraction in
Machine Design 499 (3) -- 5.1.3 Subroutines 502 (4) -- 5.1.4 Using a
Stack to Implement Recursion 506 (6) -- 5.1.5 Instruction Summary
512 (1) -- 5.2 A Register-Machine Simulator 513 (20) -- 5.2.1 The
Machine Model 515 (5) -- 5.2.2 The Assembler 520 (3) -- 5.2.3
Generating Execution Procedures for Instructions 523 (7) -- 5.2.4
Monitoring Machine Performance 530 (3) -- 5.3 Storage Allocation and
Garbage Collection 533 (14) -- 5.3.1 Memory as Vectors 534 (6) --
5.3.2 Maintaining the lllusion of Infinite Memory 540 (7) -- 5.4 The
Explicit-Control Evaluator 547 (19) -- 5.4.1 The Core of the Explicit-
Control Evaluator 549 (6) -- 5.4.2 Sequence Evaluation and Tail
Recursion 555 (3) -- 5.4.3 Conditionals, Assignments, and Definitions
558 (2) -- 5.4.4 Running the Evaluator 560 (6) -- 5.5 Compilation 566



Sommario/riassunto

(45) -- 5.5.1 Structure of the Compiler 569 (5) -- 5.5.2 Compiling
Expressions 574 (7) -- 5.5.3 Compiling Combinations 581 (6) -- 5.5.4
Combining Instruction Sequences 587 (4) -- 5.5.5 An Example of
Compiled Code 591 (9) -- 5.5.6 Lexical Addressing 600 (3) -- 5.5.7
Interfacing Compiled Code to the Evaluator -- References 611 (8) --
List of Exercises 619 (2) -- Index 621.

Structure and Interpretation of Computer Programs has had a dramatic
impact on computer science curricula over the past decade. This long-
awaited revision contains changes throughout the text. There are new
implementations of most of the major programming systems in the
book, including the interpreters and compilers, and the authors have
incorporated many small changes that reflect their experience teaching
the course at MIT since the first edition was published. A new theme
has been introduced that emphasizes the central role played by
different approaches to dealing with time in computational models:
objects with state, concurrent programming, functional programming
and lazy evaluation, and nondeterministic programming. There are new
example sections on higher-order procedures in graphics and on
applications of stream processing in numerical programming, and
many new exercises. In addition, all the programs have been reworked
to run in any Scheme implementation that adheres to the IEEE standard.



