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Structure and Interpretation of Computer Programs has had a dramatic
impact on computer science curricula over the past decade. This long-
awaited revision contains changes throughout the text. There are new
implementations of most of the major programming systems in the
book, including the interpreters and compilers, and the authors have
incorporated many small changes that reflect their experience teaching
the course at MIT since the first edition was published. A new theme
has been introduced that emphasizes the central role played by
different approaches to dealing with time in computational models:
objects with state, concurrent programming, functional programming
and lazy evaluation, and nondeterministic programming. There are new
example sections on higher-order procedures in graphics and on
applications of stream processing in numerical programming, and
many new exercises. In addition, all the programs have been reworked
to run in any Scheme implementation that adheres to the IEEE standard.



