1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

Descrizione fisica

Locazione
Collocazione

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia

UNINA990008576520403321
Yaranga, Zofia

Bibliographie des travaux en langue francaise sur I'Afrique au sud du
Sahara : sciences humaines et sociales : 1984 / realisee par Zofia
Yaranga

Paris : EHESS, 1986

303 p.;24cm

FSPBC

XIV E 3273
Francese
Materiale a stampa
Monografia

In testa al front.: Ecole des hautes etudes en science sociales. Centre
d'etudes africaines

UNINA9910463118803321
Kleinschmager Sebastian

Can static type systems speed up programming? [[electronic resource] |
: an experimental evaluation of static and dynamic type systems //
Sebastian Kleinschmager

Hamburg, : Anchor Academic Pub., 2013
3-95489-540-4

1 online resource (114 p.)

006.22

Computer programming
Application software

Electronic books.

Inglese

Materiale a stampa

Monografia

"Disseminate knowledge"--Cover.
Includes bibliographical references.



Nota di contenuto

Sommario/riassunto

Can static type systems speed up programming? An experimental
evaluation of static and dynamic type systems; Abstract;
Zusammenfassung (German Abstract); Table of Contents; Directory of
Figures; Directory of Tables; Directory of Listings; 1. Introduction; 2.
Motivation & Background; 2.1 Motivation; 2.2 Maintenance and
Debugging; 2.2.1 Maintenance in a Nutshell; 2.2.2 Debugging in a
Nutshell; 2.3 Documentation and APIs; 2.3.1 Documentation of
Software Systems; 2.3.2 APIs and Application of their Design Principles
in General Programming; 2.4 Type Systems

2.5 Empirical Research in Software Engineering2.5.1 On Empirical
Research; 2.5.2 Controlled Experiments; 2.5.3 Current State of
Empirical Research in Software Engineering; 3. Related Work; 3.1
Gannon (1977); 3.2 Prechelt and Tichy (1998); 3.3 Daly, Sazawal and
Foster (2009); 3.4 Hanenberg (2010); 3.5 Steinberg, Mayer, Stuchlik
and Hanenberg - A running Experiment series; 3.5.1 Steinberg (2011);
3.5.2 Mayer (2011); 3.5.3 Stuchlik and Hanenberg (2011); 4. The
Experiment; 4.1 The Research Question; 4.2 Experiment Overview;
4.2.1 Initial Considerations

4.2.2 Further Considerations: Studies on Using Students as Subjects4.
2.3 Design of the Experiment; 4.3 Questionnaire; 4.4 Hard- and
Software Environment; 4.4.1 Environment; 4.4.2 Programming
Languages; 4.4.2.1 Java; 4.4.2.2 Groovy; 4.5 Workspace Applications
and Tasks; 4.5.1 The Java Application - A Labyrinth Game; 4.5.2 The
Groovy Application - A simple Mail Viewer; 4.5.3 Important Changes
made to both Parts; 4.5.4 The Tasks; 4.5.4.1 The Task Types; 4.5.4.2
Tasks 1 and 10 - 2 Types to identify; 4.5.4.3 Tasks 2 and 11 - 4 Types
to identify; 4.5.4.4 Tasks 4 and 13 - Semantic Error

4.5.4.5 Tasks 5 and 14 - Semantic Error4.5.4.6 Tasks 6 and 15 - 8
Types to identify; 4.5.4.7 Tasks 7 and 16 - Stack size 2 and branch size
3;4.5.4.8 Tasks 8 and 17 - 12 types to identify; 4.5.4.9 Tasks 9 and

18 - Stack size 2 and branch size 5; 4.5.4.10 Summary of Variables and
Mapping of Tasks to Hypotheses; 4.6 Experiment Implementation; 5.
Threats to Validity; 5.1 Internal Validity; 5.2 External Validity; 6.
Analysis and Results; 6.1 General Descriptive Statistics; 6.2 Statistical
Tests and Analysis; 6.2.1 Within-Subject Analysis on the complete data
6.2.2 Analysis for residual effects between the two ParticipantGroups6.
2.3 Within-Subject Analysis on the two Participant Groups; 6.2.3.1
Participants that started with Groovy; 6.2.3.2 Participants that started
with Java; 6.2.4 Exploratory Analysis of the Results based on
Participants' Performance; 6.2.4.1 Participants that started with Groovy;
6.2.4.2 Participants that started with Java; 6.2.5 Hypotheses and Task
based Analysis; 6.2.5.1 Tasks 1, 2, 3, 6 and 8; 6.2.5.2 Hypothesis 2-1
and Tasks 7 and 9; 6.2.5.3 Hypothesis 2-2 and Tasks 4 and 5; 7.
Summary and Discussion; 7.1 Final Remarks

7.2 Result Summary

Hauptbeschreibung Programming languages that use the object-
oriented approach have been around for quite a while now. Most of
them use either a static or a dynamic type system. However, both types
are very common in the industry. But, in spite of their common use in
science and practice, only very few scientific studies have tried to
evaluate the two type systems" usefulness in certain scenarios. There
are arguments for both systems. For example, static type systems are
said to aid the programmer in the prevention of type errors, and

further, they provide documentation help for, there is an e



