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Hauptbeschreibung Programming languages that use the object-
oriented approach have been around for quite a while now. Most of
them use either a static or a dynamic type system. However, both types
are very common in the industry. But, in spite of their common use in
science and practice, only very few scientific studies have tried to
evaluate the two type systems" usefulness in certain scenarios. There
are arguments for both systems. For example, static type systems are
said to aid the programmer in the prevention of type errors, and

further, they provide documentation help for, there is an e



