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Outer billiards is a basic dynamical system defined relative to a convex
shape in the plane. B. H. Neumann introduced this system in the
1950's, and J. Moser popularized it as a toy model for celestial
mechanics. All along, the so-called Moser-Neumann question has been
one of the central problems in the field. This question asks whether or
not one can have an outer billiards system with an unbounded orbit.
The Moser-Neumann question is an idealized version of the question of
whether, because of small disturbances in its orbit, the Earth can break
out of its orbit and fly away from the Sun. In Outer Billiards on Kites,
Richard Schwartz presents his affirmative solution to the Moser-
Neumann problem. He shows that an outer billiards system can have an
unbounded orbit when defined relative to any irrational kite. A kite is a
quadrilateral having a diagonal that is a line of bilateral symmetry. The
kite is irrational if the other diagonal divides the quadrilateral into two
triangles whose areas are not rationally related. In addition to solving
the basic problem, Schwartz relates outer billiards on kites to such
topics as Diophantine approximation, the modular group, self-similar
sets, polytope exchange maps, profinite completions of the integers,
and solenoids--connections that together allow for a fairly complete
analysis of the dynamical system.



