1. Record Nr. UNINA990005545140403321
Autore Dilthey, Wilhelm <1833-1911>

Titolo Zur Geistesgeschichte des 19. Jahrhunderts : Aufsatze und Rezensionen
aus Zeitungen und Zeitschriften 1859-1874 / Wilhelm Dilthey ; hrsg.
von Ulrich Herrmann

Pubbl/distr/stampa Goéttingen : Vandenhoeck & Ruprecht, 1972
ISBN 3-525-30318-1

Descrizione fisica XIX, 471 p.;25cm

Collana Wilhelm Dilthey Gesammelte Schriften ; 16
Disciplina 193

Locazione FLFBC

Collocazione P.1 8D DILT 1 B (16)

Lingua di pubblicazione Tedesco

Formato Materiale a stampa

Livello bibliografico Monografia



2. Record Nr.

Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione

Descrizione fisica

Altri autori (Persone)
Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910814546703321
Lui Kim Man

Software development rhythms : harmonizing agile practices for
synergy / / Kim Man Lui and Keith C.C. Chan

Hoboken, N.J., : Wiley-Interscience, c2008

9786611373900
9781281373908
1281373907
9780470192672
0470192674
9780470192665
0470192666
[1st ed.]

1 online resource (325 p.)

ChanKeith C. C

005.1
Computer software - Development

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

SOFTWARE DEVELOPMENT RHYTHMS; CONTENTS; PREFACE; Special

Acknowledgment; Part I: Essentials; 1 NO PROGRAMMER DIES; 1.1
Developing Software versus Building a Tunnel; 1.1.1 The Good Old
Days?; 1.1.2 The More Things Change, the More They Stay the Same?;
1.1.3 Behind Software Products; 1.1.4 Deal or No Deal; 1.2 Do-Re-Mi
Do-Re-Mi; 1.2.1 Iterative Models; 1.2.2 Code and Fix; 1.2.3 Chaos;
1.2.4 Methodology that Matters; 1.3 Software Development Rhythms;
1.3.1 Stave Chart by Example; 1.3.2 Game Theory; 1.3.3 In-Out
Diagram; 1.3.4 Master-Coach Diagram; 1.3.5 No Mathematics

1.3.6 Where to Explore RhythmsReferences; 2 UNDERSTANDING
PROGRAMMERS; 2.1 Personality and Intelligence; 2.1.1 Virtuosi; 2.1.2
Meeting Your Team; 2.1.3 Recruiting Programmers; 2.2 Outsourced
Programmers; 2.2.1 Programmers in Their Environments; 2.2.2
Programmers, Cultures, and Teams; 2.3 Experienced Management;
2.3.1 Being Casual about Causal Relationships; 2.3.2 Not Learning from
Experience; 2.3.3 Doing Things Right Right Now; References; 3 START
WITH OPEN SOURCE; 3.1 Process and Practice; 3.1.1 The Four Ps of



Sommario/riassunto

Projects; 3.1.2 Agile Values; 3.1.3 Zero-Point Collaboration

3.2 Open-Source Software (OSS) Development3.2.1 Software Cloning;
3.2.2 Software Quality; 3.2.3 Starting Processes; 3.2.4 Open-Source
Development Community; 3.2.5 Ugrammers; 3.2.6 Participant Roles;
3.2.7 Rapid Release; 3.2.8 Blackbox Programming; 3.2.9 OSS Practices;
3.3 OSS-Like Development; 3.3.1 Agile Practices; 3.3.2 Communication
Proximity; 3.3.3 Loose and Tight Couples; 3.3.4 Collocated Software
Development; 3.4 Conclusion; References; Part II: Rhythms; 4
PLAGIARISM PROGRAMMING; 4.1 Plagiarism; 4.1.1 Existing Code; 4.1.2
Social Network Analysis; 4.1.3 Being Plagiarized

4.1.4 Turn Everyone into a Programmer4.1.5 Pattern Language; 4.1.6
Software Team Capability; 4.1.7 Rough-Cut Design; 4.1.8 Training Is
Not a Solution; 4.2 Nothing Faster than Plagiarism; 4.2.1 Immorality;
4.2.2 Unprecedented Code; 4.2.3 People Network; 4.2.4 Rhythm for
Plagiarism; 4.2.5 Plagiarism at Work; 4.3 Business and Rhythm for
Plagiarism; 4.3.1 15-Minute Business Presentation; 4.3.2 Marketing
Research; 4.3.3 Chatting Robot; 4.3.4 Old Song, New Singer;
References; 5 PAIR PROGRAMMING; 5.1 Art and Science; 5.1.1 The Right
Partner; 5.1.2 Noisy Programming; 5.1.3 Just Training

5.1.4 Pay to Watch5.2 Two Worlds; 5.2.1 Moneyless World; 5.2.2
Money-Led World; 5.2.3 Economics; 5.2.4 Mythical Quality-Time; 5.2.5
Elapsed Time Accelerated; 5.2.6 Critical Path Method; 5.2.7 Why Two,
Not Three: The Antigroup Phenomenon; 5.2.8 Software Requirements
Are Puzzles; 5.3 Programming Task Demands; 5.3.1 2 and 4 Is 6; 5.3.2
2and41s4;5.3.32and41s3;5.3.42and 4 2;5.3.52and 4 is
Unknown; 5.4 Pair Programming Is More than Programming; 5.4.1
Design by Code; 5.4.2 Pair Design; 5.4.3 Rhythmic Pair Programming;
5.5 Pair Programming Team Coached; References

6 REPEAT PROGRAMMING

An accessible, innovative perspective on using the flexibility of agile
practices to increase software quality and profitability When agile
approaches in your organization don't work as expected or you feel
caught in the choice between agility and discipline, it is time to stop

and think about software development rhythms! Agile software
development is a popular development process that continues to
reshape philosophies on the connections between disciplined processes
and agile practices. In Software Development Rhythms, authors Lui and
Chan explain how adopting one practice and combining



