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The finite element method is a technique for solving problems in
applied science and engineering. The essence of this book is the
application of the finite element method to the solution of boundary
and initial-value problems posed in terms of partial differential
equations. The method is developed for the solution of Poisson's
equation, in a weighted-residual context, and then proceeds to time-
dependent and nonlinear problems. The relationship with the
variational approach is alsoexplained. This book is written at an
introductory level, developing all the necessary concepts where
required. Co
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Weyl group multiple Dirichlet series are generalizations of the Riemann
zeta function. Like the Riemann zeta function, they are Dirichlet series

with analytic continuation and functional equations, having applications
to analytic number theory. By contrast, these Weyl group multiple



Dirichlet series may be functions of several complex variables and their
groups of functional equations may be arbitrary finite Weyl groups.
Furthermore, their coefficients are multiplicative up to roots of unity,
generalizing the notion of Euler products. This book proves
foundational results about these series and develops their
combinatorics. These interesting functions may be described as
Whittaker coefficients of Eisenstein series on metaplectic groups, but
this characterization doesn't readily lead to an explicit description of
the coefficients. The coefficients may be expressed as sums over
Kashiwara crystals, which are combinatorial analogs of characters of
irreducible representations of Lie groups. For Cartan Type A, there are
two distinguished descriptions, and if these are known to be equal, the
analytic properties of the Dirichlet series follow. Proving the equality of
the two combinatorial definitions of the Weyl group multiple Dirichlet
series requires the comparison of two sums of products of Gauss sums
over lattice points in polytopes. Through a series of surprising
combinatorial reductions, this is accomplished. The book includes
expository material about crystals, deformations of the Weyl character
formula, and the Yang-Baxter equation.



