1. Record Nr.

Titolo

Pubbl/distr/stampa
ISBN

Descrizione fisica

Lingua di pubblicazione
Formato

Livello bibliografico

Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Altri autori (Persone)

Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia

UNICASUBO2761253

The practice of cultural studies / Richard Johnson, Deborah Chambers,
Parvati Raghuram and Estella Tincknell

London ; Thousand Oaks ; New Delhi, : Sage, 2004

0761960996
0761961003

XI, 300 p. :ill. ; 25 cm.

Inglese
Materiale a stampa
Monografia

UNINA9910967869403321
Hirt Marcus

Oracle JRockit : the definitive guide : develop and manage robust Java
applications with Oracle's high-performance Java Virtual Machine / /
Marcus Hirt, Marcus Lagergren

Birmingham, U.K., : Packt Enterprise, 2010

9786612624094
9781282624092
1282624091
9781847198075
1847198074

[1st edition]
1 online resource (588 p.)

LagergrenMarcus

005.1

005.133

Application software - Development

Java (Computer program language)

Inglese

Materiale a stampa

Monografia

Includes index.

Includes bibliographical references (p. [493]-501) and index.



Nota di contenuto

Sommario/riassunto

Cover; Copyright; Credits; Foreword; About the Authors; About the
Reviewers; Table of Contents; Preface; Chapter 1: Getting Started,;
Obtaining the JRockit JVM; Migrating to JRockit; Command-line options;
System properties; Standardized options; Non-standard options;
Changes in behavior; A note on JRockit versioning; Getting help;
Summary; Chapter 2: Adaptive Code Generation; Platform
independence; The Java Virtual Machine; Stack machine; Bytecode
format; Operations and operands; The constant pool; Code generation
strategies; Pure bytecode interpretation; Static compilation

Total JIT compilationMixed mode interpretation; Adaptive code
generation; Determining ""hotness™'; Invocation counters; Software-
based thread sampling; Hardware-based sampling; Optimizing a
changing program; Inside the JIT compiler; Working with bytecode;
Bytecode obfuscation; Bytecode "optimizers™'; Abstract syntax trees;
Where to optimize; The JRockit code pipeline; Why JRockit has no
bytecode interpreter; Bootstrapping; Runtime code generation;
Trampolines; Code generation requests; Optimization requests; On-
stack replacement; Bookkeeping; A walkthrough of method generation
in JRockit

The JRockit IR formatJIT compilation; Generating optimized code;
Controlling code generation in JRockit; Command-line flags and
directive files; Command-line flags; Directive files; Summary; Chapter

3: Adaptive Memory Management; The concept of automatic memory
management; Adaptive memory management; Advantages of automatic
memory management; Disadvantages of automatic memory
management; Fundamental heap management; Allocating and releasing
objects; Fragmentation and compaction; Garbage collection algorithms;
Reference counting; Tracing techniques; Mark and sweep; Stop and

copy
Stopping the worldConservative versus exact collectors; Livemaps;

Generational garbage collection; Multi generation nurseries; Write
barriers; Throughput versus low latency; Optimizing for throughput;
Optimizing for low latency; Garbage collection in JRockit; Old
collections; Nursery collections; Permanent generations; Compaction;
Speeding it up and making it scale; Thread local allocation; Larger
heaps; 32-Bits and the 4-GB Barrier; The 64-bit world; Cache
friendliness; Prefetching; Data placement; NUMA; Large pages;
Adaptability; Near-real-time garbage collection; Hard and soft real-
time

JRockit Real TimeDoes the soft real-time approach work?; How does it
work?; The Java memory API; Finalizers; References; Weak references;
Soft references; Phantom references; Differences in JVM behavior;
Pitfalls and false optimizations; Java is not C++; Controlling JRockit
memory management; Basic switches; Outputting GC data; Set initial
and maximum heap size; Controlling what to optimize for; Specifying a
garbage collection strategy; Compressed references; Advanced
switches; Summary; Chapter 4. Threads and Synchronization;
Fundamental concepts; Hard to debug; Difficult to optimize

Latency analysis

Develop and manage robust Java applications with Oracle's high-
performance JRockit Java Virtual Machine with this book and eBook



