00807cam0 22002413 450 SOBE0002538720211014082511.020120515d2012 |||||ita|0103 baitaIT<<Il >>codice in tasca 2012accertamento, riscossione, imposte sui redditiMilanofiori Assago (MI)IPSOAWolters Kluwer2012378 p.19 cm*ItaliaAF00024563070423419ITUNISOB20211014RICAUNISOBUNISOB340|Ita|Cod157513SOBE00025387M 102 Monografia moderna SBNM340|Ita|Cod000347SI157513donocatenacciUNISOBUNISOB20120515155507.020211014082511.0menleCodice in tasca 20121717804UNISOB03894nam 22007093 450 991095985440332120231110232530.097814704701801470470187(MiAaPQ)EBC6852909(Au-PeEL)EBL6852909(CKB)20667665800041(RPAM)22496890(OCoLC)1292081387(EXLCZ)992066766580004120220117d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTits Polygons1st ed.Providence :American Mathematical Society,2022.©2022.1 online resource (132 pages)Memoirs of the American Mathematical Society ;v.275"January 2022, volume 275, number 1352 (sixth of 6 numbers)."Print version: Mühlherr, Bernhard Tits Polygons Providence : American Mathematical Society,c2022 9781470451011 Includes bibliographical references and index.Tits polygons -- Tits hexagons -- Groups of relative rank 1 -- Appendix / by Holger P. Petersson."We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic properties of Tits polygons and characterize a large class of Tits hexagons in terms of Jordan algebras. We apply this classification to give a "rank 2" presentation for the group of F-rational points of an arbitrary exceptional simple group of F-rank at least 4 and to determine defining relations for the group of F-rational points of an an arbitrary group of Frank 1 and absolute type D4, E6, E7 or E8 associated to the unique vertex of the Dynkin diagram that is not orthogonal to the highest root. All of these results are over a field of arbitrary characteristic"--Provided by publisher.Memoirs of the American Mathematical Society Moufang loopsJordan algebrasBuildings (Group theory)Graph theoryPolygonsNonassociative rings and algebras -- Jordan algebras (algebras, triples and pairs) -- Exceptional Jordan structuresmscGroup theory and generalizations -- Structure and classification of infinite or finite groups -- Groups with a $BN$-pair; buildingsmscGeometry -- Finite geometry and special incidence structures -- Generalized quadrangles, generalized polygonsmscGeometry -- Finite geometry and special incidence structures -- Buildings and the geometry of diagramsmscMoufang loops.Jordan algebras.Buildings (Group theory)Graph theory.Polygons.Nonassociative rings and algebras -- Jordan algebras (algebras, triples and pairs) -- Exceptional Jordan structures.Group theory and generalizations -- Structure and classification of infinite or finite groups -- Groups with a $BN$-pair; buildings.Geometry -- Finite geometry and special incidence structures -- Generalized quadrangles, generalized polygons.Geometry -- Finite geometry and special incidence structures -- Buildings and the geometry of diagrams.512/.217C4020E4251E1251E24mscMühlherr Bernhard1802346Weiss Richard M504133MiAaPQMiAaPQMiAaPQBOOK9910959854403321Tits Polygons4348008UNINA