00858cam0 22002531 450 SOBE0001890620111021103818.020111021d1892 |||||ita|0103 baitaITTemi ed esercizi di composizione con modelli d'analisiM. Parascandolo4. ed. riveduta ed ampliataNapoliP. Rispoli Librai Editori1892259 p.18 cmParascandolo, MicheleSOBA00001304070179618ITUNISOB20111021RICAUNISOBUNISOB09090838SOBE00018906M 102 Monografia moderna SBNM090000660NO90838bethbUNISOBUNISOB20111021094005.020111021094116.0bethbTemi ed esercizi di composizione con modelli d'analisi1721046UNISOB03408nam 2200589 450 991082789930332120170822144402.01-4704-0573-3(CKB)3360000000465143(EBL)3114172(SSID)ssj0000889255(PQKBManifestationID)11478762(PQKBTitleCode)TC0000889255(PQKBWorkID)10894880(PQKB)10177829(MiAaPQ)EBC3114172(RPAM)16022809(PPN)195418484(EXLCZ)99336000000046514320150416h20092009 uy 0engur|n|---|||||txtccrSymplectic actions of 2-tori on 4-manifolds /Alvaro PelayoProvidence, Rhode Island :American Mathematical Society,2009.©20091 online resource (81 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 204, Number 959"Volume 204, Number 959 (third of 5 numbers)."0-8218-4713-9 Includes bibliographical references.""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. The orbit space""; ""2.1. Symplectic form on the T-orbits""; ""2.2. Stabilizer subgroup classification""; ""2.3. Orbifold structure of M/T""; ""2.4. A flat connection for the projection M M/T""; ""2.5. Symplectic tube theorem""; ""Chapter 3. Global model""; ""3.1. Orbifold coverings of M/T""; ""3.2. Symplectic structure on M/T""; ""3.3. Model of (M, ): Definition""; ""3.4. Model of (M,): Proof""; ""Chapter 4. Global model up to equivariant diffeomorphisms""; ""4.1. Generalization of Kahn's theorem""""4.2. Smooth equivariant splittings""""4.3. Alternative model""; ""Chapter 5. Classification: Free case""; ""5.1. Monodromy invariant""; ""5.2. Uniqueness""; ""5.3. Existence""; ""5.4. Classification theorem""; ""Chapter 6. Orbifold homology and geometric mappings""; ""6.1. Geometric torsion in homology of orbifolds""; ""6.2. Geometric isomorphisms""; ""6.3. Symplectic and torsion geometric maps""; ""6.4. Geometric isomorphisms: Characterization""; ""Chapter 7. Classification""; ""7.1. Monodromy invariant""; ""7.2. Uniqueness""; ""7.3. Existence""; ""7.4. Classification theorem""""Chapter 8. The four-dimensional classification""""8.1. Two families of examples""; ""8.2. Classification statement""; ""8.3. Proof of Theorem 8.2.1""; ""8.4. Corollaries of Theorem 8.2.1""; ""Chapter 9. Appendix: (sometimes symplectic) orbifolds""; ""9.1. Bundles, connections""; ""9.2. Coverings""; ""9.3. Differential and symplectic forms""; ""9.4. Orbifold homology, Hurewicz map""; ""9.5. Classification of orbisurfaces""; ""Bibliography""Memoirs of the American Mathematical Society ;Volume 204, Number 959.Symplectic manifoldsLow-dimensional topologyTorus (Geometry)Symplectic manifolds.Low-dimensional topology.Torus (Geometry)516.3/62Pelayo Alvaro1978-1683699MiAaPQMiAaPQMiAaPQBOOK9910827899303321Symplectic actions of 2-tori on 4-manifolds4054670UNINA