01311nem0-2200397---450-99000934705040332120111202115503.0000934705FED01000934705(Aleph)000934705FED0100093470520110421f19501958km-y0itay50------baitaITa--------bl--aa-aabb-a--------a1:25000e0010730e0011500n0413500n0413000-d--b-----RoccaseccaDocumento cartograficoIstituto geografico militare2 ed.1:25000 ; proiezione conforme universale trasversa di Mercatore (E1°07'30''-E1°15'/N41°35'-N41°30')FirenzeIGM[1958]1 carta44 x 38 su foglio 62 x 53 cmCarta d'Italia160, quadrante 4, tavoletta SEIl meridiano di riferimento è M. Mario, RomaRilievo del 1942Foglio 160, quadrante 4 tavoletta S. E.LazioCarteIstituto geografico militare5005ITUNINARICAUNIMARCMP990009347050403321MP Cass.2 160, 4(2)B.F.L.F. 5507ILFGEILFGERoccasecca767474UNINA00759cam0 2200241 450 E60020005738020210329080636.020091203d1984 |||||ita|0103 baengUSScience and ScepticismJohn WatkinsPrincetonPrinceton University Press1984387 p.24 cmWatkins, JohnA600200058665070729172ITUNISOB20210329RICAUNISOBUNISOB10042529E600200057380M 102 Monografia moderna SBNM100003130Si42529acquistomassimoUNISOBUNISOB20091203110103.020210329080626.0AlfanoScience and Scepticism1707124UNISOB04535nam 2200673Ia 450 991096275190332120200520144314.097808838593460883859343(CKB)2670000000205153(EBL)3330394(SSID)ssj0000577633(PQKBManifestationID)11378677(PQKBTitleCode)TC0000577633(PQKBWorkID)10561663(PQKB)10857799(UkCbUP)CR9780883859346(MiAaPQ)EBC3330394(Au-PeEL)EBL3330394(CaPaEBR)ebr10729365(OCoLC)929120235(RPAM)2644459(Perlego)3450838(EXLCZ)99267000000020515320111102d1967 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierGeometry revisited /by H.S.M. Coxeter and S.L. Greitzer1st ed.Washington, DC Mathematical Association of America19671 online resource (xiv, 193 pages) digital, PDF file(s)Anneli Lax New Mathematical Library ;19Title from publisher's bibliographic system (viewed on 31 May 2016).9780883856192 0883856190 Includes bibliographical references and index.""Front Cover""; ""Geometry Revisited""; ""Copyright Page""; ""Contents""; ""Preface""; ""Chapter 1. Points and Lines Connected with a Triangle""; ""1.1 The extended Law of Sines""; ""1.2 Cevaâ€?s theorem""; ""1.3 Points of interest""; ""1.4 The incircle and excircles""; ""1.5 The Steiner-Lehmus theorem""; ""1.6 The orthic triangle""; ""1.7 The medial triangle and Euler line""; ""1.8 The nine-point Circle""; ""1.9 Pedal triangles""; ""Chapter 2. Some Properties of Circles""; ""2.1 The power of a point with respect to a circle""; ""2.2 The radical axis of two circles""; ""2.3 Coaxal circles""""2.4 More on the altitudes and orthocenter of a triangle""""2.5 Simson lines""; ""2.6 Ptolemyâ€?s theorem and its extension""; ""2.7 More on Simson lines""; ""2.8 The Butterfly""; ""2.9 Morleyâ€?s theorem""; ""Chapter 3. Collinearity and Concurrence""; ""3.1 Quadrangles; Varignonâ€?s theorem""; ""3.2 Cyclic quadrangles; Brahmaguptaâ€?s formula""; ""3.3 Napoleon triangles""; ""3.4 Menelausâ€?s theorem""; ""3.5 Pappusâ€?s theorem""; ""3.6 Perspective triangles; Desarguesâ€?s theorem""; ""3.7 Hexagons""; ""3.8 Pascalâ€?s theorem""; ""3.9 Brianchonâ€?s theorem""""Chapter 4. Transformations""""4.1 Translation""; ""4.2 Rotation""; ""4.3 Half-turn""; ""4.4 Reflection""; ""4.5 Fagnanoâ€?s problem""; ""4.6 The three jug problem""; ""4.7 Dilatation""; ""4.8 Spiral similarity""; ""4.9 A genealogy of transformations""; ""Chapter 5. An Introduction to Inversive Geometry""; ""5.1 Separation""; ""5.2 Cross ratio""; ""5.3 Inversion""; ""5.4 The inversive plane""; ""5.5 Orthogonality""; ""5.6 Feuerbachâ€?s theorem""; ""5.7 Coaxal circles""; ""5.8 Inversive distance""; ""5.9 Hyperbolic functions""; ""Chapter 6. An Introduction to Projective Geometry""""6.1 Reciprocation""""6.2 The polar circle of a triangle""; ""6.3 Conics""; ""6.4 Focus and directrix""; ""6.5 The projective plane""; ""6.6 Central conics""; ""6.7 Stereographic and gnomonic projection""; ""Hints and Answers to Exercises""; ""References""; ""Glossary""; ""Index""; ""Back Cover""Among the many beautiful and nontrivial theorems in geometry found here are the theorems of Ceva, Menelaus, Pappus, Desargues, Pascal, and Brianchon. A nice proof is given of Morley's remarkable theorem on angle trisectors. The transformational point of view is emphasized: reflections, rotations, translations, similarities, inversions, and affine and projective transformations. Many fascinating properties of circles, triangles, quadrilaterals, and conics are developed.New mathematical library ;19.GeometryMathematicsGeometry.Mathematics.516Coxeter H. S. M(Harold Scott Macdonald),1907-2003.903227Greitzer Samuel L54697MiAaPQMiAaPQMiAaPQBOOK9910962751903321Geometry revisited4359110UNINA