01154cam0 2200301 450 E60020001549120231220095659.020060105d2005 |||||ita|0103 baitaITGiurisprudenza penale 2005Guida ragionata per la prova scritta dell'esame di avvocato e uditore giudiziarioFrancesco CaringellaRoberto GarofoliMilanoGiuffrè[2005]X, 28324 cmPercorsi001LAEC000232832001 *PercorsiCaringella, FrancescoAF0000394907039804Garofoli, RobertoAF00010900070ITUNISOB20231220RICAUNISOBUNISOB340128130UNISOB340129419E600200015491M 102 Monografia moderna SBNM340005186Si128130acquistocatenacciUNISOBUNISOB20060105115447.020151006122800.0catenacci340007872SI129419acquistocatenacciUNISOBUNISOB20151006122803.020151006122837.0catenacciGiurisprudenza penale 20051690657UNISOB03688nam 2200613 450 991078873480332120170822144224.01-4704-0224-6(CKB)3360000000464819(EBL)3114540(SSID)ssj0000889114(PQKBManifestationID)11452883(PQKBTitleCode)TC0000889114(PQKBWorkID)10881942(PQKB)11316966(MiAaPQ)EBC3114540(RPAM)4979495(PPN)195415191(EXLCZ)99336000000046481919980402h19981998 uy| 0engur|n|---|||||txtccrOn stability and endoscopic transfer of unipotent orbital integrals on p-adic symplectic groups /Magdy AssemProvidence, Rhode Island :American Mathematical Society,[1998]©19981 online resource (119 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 635"July 1998, volume 134, number 635 (first of 6 numbers)."0-8218-0765-X Includes bibliographical references (pages 100-101).""Contents""; ""0. Introduction""; ""1. Unipotent orbits and prehomogeneous spaces""; ""1. Ranga Rao data""; ""2. Some classes of examples""; ""3. Induction of G(F)-unipotent classes""; ""2. The Hecke algebra and some Igusa local orbital zeta functions""; ""1. Unipotent orbital integrals as special values of orbital Igusa zeta functions""; ""2. GL(n,O[sub(F))]-orbit decomposition of Sym (n) and local densitites""; ""3. The K-decomposition of supp (X [omitted] f[sub(m)](1 + X)) â?© g(2)""; ""3. The evaluation of f[sup(H)] at the identity""""1. The integral of Î?[sub(k)], 2 â?? k â?? n, Part A""""2. The integral of Î?[sub(k)], 2 â?? k â?? n, Part B""; ""3. The integral of Î?[sub(1)]""; ""4. The value f[sup(H) (1))] for H = SO[sup(E) (4) x SL(2)""; ""5. Matching results""; ""4. Matching of unipotent orbital integrals""; ""1. Unramified endoscopic data""; ""2. The map f [omitted] f[sup(H)""; ""3. Endoscopic induction of unipotent orbits""; ""4. Matching of regular unipotent orbital integrals""; ""5. Matching of unipotent orbital integrals for G = Sp(6) and its unramified endoscopic groups""""6. Matching of subregular orbital integrals""""7. Matching of the orbits 2[sup(r)] 1[sup(2n-2r)], for r = 2,3""; ""8. Matching results for Sp(8)""; ""9. Endoscopic transfer of the trivial orbital integral""; ""10. Endoscopic transfer of other orbital integrals""; ""11. Some remarks on the transfer factors""; ""5. Remarks on stability and endoscopic transfer""; ""1. Stable distributions""; ""2. Formal properties of endoscopic induction and stability""; ""3. Remarks on Shalika germs""; ""4. Conjecture (B) implies Conjecture (A)""; ""5. Stability and subregular packets""; ""6. Heuristics""""Appendix I""""Appendix II""; ""References""Memoirs of the American Mathematical Society ;no. 635.Symplectic groupsp-adic fieldsRepresentations of groupsSymplectic groups.p-adic fields.Representations of groups.510 s512/.74Assem Magdy1954-1996,1580681MiAaPQMiAaPQMiAaPQBOOK9910788734803321On stability and endoscopic transfer of unipotent orbital integrals on p-adic symplectic groups3861788UNINA