05475nam 2200649 450 991014043680332120230803195221.01-118-72514-X1-118-72518-21-118-72513-1(CKB)2670000000523230(EBL)1631084(SSID)ssj0001111365(PQKBManifestationID)11591188(PQKBTitleCode)TC0001111365(PQKBWorkID)11130714(PQKB)10003377(OCoLC)870589263(MiAaPQ)EBC1631084(DLC) 2013035003(Au-PeEL)EBL1631084(CaPaEBR)ebr10837065(EXLCZ)99267000000052323020140219h20142014 uy 0engur|n|---|||||txtccrAsymptotic methods in the theory of plates with mixed boundary conditions /Igor V. Andrianov [and three others]Chichester, England :Wiley,2014.©20141 online resource (288 p.)Description based upon print version of record.1-118-72519-0 Includes bibliographical references at the end of each chapters and index.Cover; Title Page; Copyright; Contents; Preface; List of Abbreviations; Chapter 1 Asymptotic Approaches; 1.1 Asymptotic Series and Approximations; 1.1.1 Asymptotic Series; 1.1.2 Asymptotic Symbols and Nomenclatures; 1.2 Some Nonstandard Perturbation Procedures; 1.2.1 Choice of Small Parameters; 1.2.2 Homotopy Perturbation Method; 1.2.3 Method of Small Delta; 1.2.4 Method of Large Delta; 1.2.5 Application of Distributions; 1.3 Summation of Asymptotic Series; 1.3.1 Analysis of Power Series; 1.3.2 Padé Approximants and Continued Fractions; 1.4 Some Applications of PA1.4.1 Accelerating Convergence of Iterative Processes1.4.2 Removing Singularities and Reducing the Gibbs-Wilbraham Effect; 1.4.3 Localized Solutions; 1.4.4 Hermite-Padé Approximations and Bifurcation Problem; 1.4.5 Estimates of Effective Characteristics of Composite Materials; 1.4.6 Continualization; 1.4.7 Rational Interpolation; 1.4.8 Some Other Applications; 1.5 Matching of Limiting Asymptotic Expansions; 1.5.1 Method of Asymptotically Equivalent Functions for Inversion of Laplace Transform; 1.5.2 Two-Point PA; 1.5.3 Other Methods of AEFs Construction; 1.5.4 Example: Schrödinger Equation1.5.5 Example: AEFs in the Theory of Composites1.6 Dynamical Edge Effect Method; 1.6.1 Linear Vibrations of a Rod; 1.6.2 Nonlinear Vibrations of a Rod; 1.6.3 Nonlinear Vibrations of a Rectangular Plate; 1.6.4 Matching of Asymptotic and Variational Approaches; 1.6.5 On the Normal Forms of Nonlinear Vibrations of Continuous Systems; 1.7 Continualization; 1.7.1 Discrete and Continuum Models in Mechanics; 1.7.2 Chain of Elastically Coupled Masses; 1.7.3 Classical Continuum Approximation; 1.7.4 ""Splashes''; 1.7.5 Envelope Continualization; 1.7.6 Improvement Continuum Approximations1.7.7 Forced Oscillations1.8 Averaging and Homogenization; 1.8.1 Averaging via Multiscale Method; 1.8.2 Frozing in Viscoelastic Problems; 1.8.3 The WKB Method; 1.8.4 Method of Kuzmak-Whitham (Nonlinear WKB Method); 1.8.5 Differential Equations with Quickly Changing Coefficients; 1.8.6 Differential Equation with Periodically Discontinuous Coefficients; 1.8.7 Periodically Perforated Domain; 1.8.8 Waves in Periodically Nonhomogenous Media; References; Chapter 2 Computational Methods for Plates and Beams with Mixed Boundary Conditions; 2.1 Introduction2.1.1 Computational Methods of Plates with Mixed Boundary Conditions2.1.2 Method of Boundary Conditions Perturbation; 2.2 Natural Vibrations of Beams and Plates; 2.2.1 Natural Vibrations of a Clamped Beam; 2.2.2 Natural Vibration of a Beam with Free Ends; 2.2.3 Natural Vibrations of a Clamped Rectangular Plate; 2.2.4 Natural Vibrations of the Orthotropic Plate with Free Edges Lying on an Elastic Foundation; 2.2.5 Natural Vibrations of the Plate with Mixed Boundary Conditions ""Clamping-Simple Support''; 2.2.6 Comparison of Theoretical and Experimental Results2.2.7 Natural Vibrations of a Partially Clamped Plate Covers the theoretical background of asymptotic approaches and its applicability to solve mechanical engineering-oriented problems of plates with mixed boundary conditions Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions comprehensively covers the theoretical background of asymptotic approaches and its applicability to solve mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions.The first part of this book is devoted to the description of asymptotic methodPlates (Engineering)Mathematical modelsAsymptotic expansionsPlates (Engineering)Mathematical models.Asymptotic expansions.624.1/7765015114Andrianov I. V(Igorʹ Vasilʹevich),1948-890280Andrianov I. V(Igorʹ Vasilʹevich),1948-890280MiAaPQMiAaPQMiAaPQBOOK9910140436803321Asymptotic methods in the theory of plates with mixed boundary conditions1988759UNINA02510nam0 22005293i 450 RAV010883520251003044324.0IT59-2414 19900830d1959 ||||0itac50 baitaitaitz01i xxxe z01nz01ncRDAcarrierDall'antifascismo alla Resistenzadi Leo ValianiMilanoFeltrinelli1959193 p.19 cm.Universale economica269. Serie Documenti4001RAV01088312001 Universale economica. Serie Documenti4Dall'antifascismo alla ResistenzaUFE1023189CFIV003565204861ItaliaStoria1922-1947FIRBA1C190905IAntifascismoFIRCFIC021663EITMilanoMUSL002184945STORIA. ITALIA21945.091Storia. Italia. Regno di Vittorio Emanule III, 1900-194614945.091STORIA D'ITALIA. REGNO DI VITTORIO EMANUELE III, 1900-194620945.0915STORIA. ITALIA. PERIODO FASCISTA, 1922-194321945.0916STORIA D'ITALIA. PERIODO DELLA RESISTENZA ARMATA E DELLA FINE DEL REGNO, 1943-194620945.0916Storia d'Italia. Periodo della resistenza armata e della fine del regno. 1943-194622IT/162.5PARTITI E MOVIMENTI POLITICI ITALIA FASCISTA 1922-1939RIT/1627.9CULTURA ANTIFASCISTA ITALIA FASCISTA 1922-1939RIT/27241.0RESISTENZA ITALIANA VICENDE POLITICHE 1943-1945ROpposizione al fascismoAntifascismoOpposizione al fascismoValiani, LeoCFIV003565070134381Weiczen, LeoSBNV002949Valiani, LeoITIT-00000019900830IT-BN0095 IT-NA0079 IT-NA0120 IT-NA0693 IT-NA0230 IT-NA0313 NAP IRF. VITALE $NAP BNR.FIENGA La consegna dei documenti è effettuata dall'Ufficio DistribuzioneNAP EBBIBLIOTECA$NAP 01DEMARCO $RAV0108835Biblioteca Centralizzata di Ateneo1 v. 01DEMARCO MON. 139 01 0000098185 VMA 1 v.A 2023050420240902 01 BN CR EB IR SEDall'antifascismo alla resistenza204861UNISANNIO