00987nam0 22002531i 450 RML030086920231121125743.020121121d1970 ||||0itac50 bafrechz01i xxxe z01n˜Le œthéatre et la révolutionhistoire anecdotique des spectacles, de leurs comédiens et de leur public par rapport à la révolution francaiseErnest LunelGenève Slatkine Reprints 1970160 p.23 cmLunel, ErnestRMLV194270457974ITIT-0120121121IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 RML0300869Biblioteca umanistica Giorgio Aprea 52CIS 11/738 52VM 0000708925 VM barcode:00062481. - Inventario:18687 MAGVMA 2007100820121204 52Théâtre et la Révolution184067UNICAS03657nam 22005655 450 991095446820332120250725084836.03-642-57748-210.1007/978-3-642-57748-2(CKB)3400000000104310(SSID)ssj0000805267(PQKBManifestationID)11504528(PQKBTitleCode)TC0000805267(PQKBWorkID)10842170(PQKB)11521016(DE-He213)978-3-642-57748-2(MiAaPQ)EBC3089524(EXLCZ)99340000000010431020121227d1995 u| 0engurnn#008mamaatxtccrBasic Geometry of Voting /by Donald G. Saari1st ed. 1995.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1995.1 online resource (XII, 300 p.)"With 102 Figures."3-540-60064-7 Includes bibliographical references and index.I. From an Election Fable to Election Procedures -- 1.1 An Electoral Fable -- 1.2 The Moral of the Tale -- 1.3 From Aristotle to “Fast Eddie” -- 1.4 What Kind of Geometry? -- II. Geometry for Positional And Pairwise Voting -- 2.1 Ranking Regions -- 2.2 Profiles and Election Mappings -- III. The Problem With Condorcet -- 3.1 Why Can’t an Organization Be More Like a Person? -- 3.2 Geometry of Pairwise Voting -- 3.3 Black’s Single-Peakedness -- 3.4 Arrow’s Theorem -- IV. Positional Voting And the BC -- 4.1 Positional Voting Methods -- 4.2 What a Difference a Procedure Makes; Several Different Outcomes -- 4.3 Positional Versus Pairwise Voting -- 4.4 Profile Decomposition -- 4.5 From Aggregating Pairwise Votes to the Borda Count -- 4.6 The Other Positional Voting Methods -- 4.7 Multiple Voting Schemes -- 4.8 Other Election Procedures -- V. Other Voting Issues -- 5.1 Weak Consistency: The Sum of the Parts -- 5.2 From Involvement and Monotonicity to Manipulation -- 5.3 Gibbard-Satterthwaite and Manipulable Procedures -- 5.4 Proportional Representation -- 5.5 House Monotone Methods -- VI. Notes -- VII. References.A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow`s Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court.Operations researchEconometricsOperations Research and Decision TheoryQuantitative EconomicsOperations research.Econometrics.Operations Research and Decision Theory.Quantitative Economics.324/.01/516Saari D(Donald)authttp://id.loc.gov/vocabulary/relators/aut57216MiAaPQMiAaPQMiAaPQBOOK9910954468203321Basic geometry of voting911738UNINA01396nam0 22003493i 450 PUV034523120251003044312.0047196792020121009d1997 ||||0itac50 baenggbz01i xxxe z01nz01ncRDAcarrierWaveletstheory and applicationsA. K. Louis, P. Maass, A. RiederChichester (U.K.)J. Wileyc1997XVII, 324 p.24 cmPure and applied mathematicsa Wiley-Interscience series of texts, monographs, and tracts001MIL00045662001 Pure and applied mathematicsa Wiley-Interscience series of texts, monographs, and tractsWAVELETS <CALCOLO NUMERICO>FIRMILC067248I515.2433Analisi di Fourier e analisi in serie di funzioni21Louis, Alfred K.MILV108084070437803Maass, PeterMILV171561070437804Rieder, A.PUVV178131070437805ITIT-00000020121009IT-BN0095 NAP 01M/S $PUV0345231Biblioteca Centralizzata di Ateneo 01M/S (C) 22 0188 01C 8002201885 VMA 1 v.Y 2012100920121009 01Wavelets65900UNISANNIO