01173nam2 2200349 450 00003353820201218132531.0978-88-99657-85-720201218d2017----km-y0itay50------bamulITy-------001yy[Pakistan] Lines in the sandcontemporary art from PakistanLuciano Benetton, Aman Mojadidi [et al.] [texts]Enrico Bossan [a cura di][Crocetta del Montello]Antiga2017476 p.ill.21x22 cmImago Mundi Luciano Benetton CollectionPakistanTesto in inglese, urdu e italiano2001001000033428[Pakistan] Lines in the sand1763364ArteCollezioniCataloghiPakistanArtisti70920Benetton,Luciano127373Mojadidi,Aman790089Bossan,EnricoITUNIPARTHENOPERICAUNIMARChttp://www.imagomundiart.com/collections000033538709/I.M./As/2847975NAVA12011Lines in the sand1763364UNIPARTHENOPE04129nam a2200397 i 4500991003633589707536m o d cr cn|---|||||190328s2018 si a ob 001 0 eng d9789811329012(electronic bk.)981132901X(electronic bk.)10.1007/978-981-13-2901-2b14363458-39ule_instBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematicaeng516.123Kobayashi, Toshiyuki721059Symmetry breaking for representations of rank one orthogonal groups II[e-book] /Toshiyuki Kobayashi, Birgit SpehSingapore :Springer,20181 online resource (xv, 344 pages) :illustrations (some color)texttxtrdacontentcomputercrdamediaonline resourcecrrdacarrierLecture notes in mathematics,0075-8434 ;2234Includes bibliographical references and index1 Introduction ; 2 Review of principal series representations ; 3 Symmetry breaking operators for principal series representations ; general theory ; 4 Symmetry breaking for irreducible representations with infinitesimal character p ; 5 Regular symmetry breaking operators ; 6 Differential symmetry breaking operators ; 7 Minor summation formul related to exterior tensor 'i(Cn) ; 8 More about principal series representations ; 9 Regular symmetry breaking operators eAi;j;;from I(i; ) to J"(j; ) ; 10 Symmetry breaking operators for irreducible representations with innitesimal character p ; 11 Application I ; 12 Application II ; 13 A conjecture ; 14 Appendix I ; 15 Appendix II ; List of Symbols ; IndexThis work provides the first classification theory of matrix-valued symmetry breaking operators from principal series representations of a reductive group to those of its subgroup. The study of symmetry breaking operators (intertwining operators for restriction) is an important and very active research area in modern representation theory, which also interacts with various fields in mathematics and theoretical physics ranging from number theory to differential geometry and quantum mechanics. The first author initiated a program of the general study of symmetry breaking operators. The present book pursues the program by introducing new ideas and techniques, giving a systematic and detailed treatment in the case of orthogonal groups of real rank one, which will serve as models for further research in other settings. In connection to automorphic forms, this work includes a proof for a multiplicity conjecture by Gross and Prasad for tempered principal series representations in the case (SO(n + 1, 1), SO(n, 1)). The authors propose a further multiplicity conjecture for nontempered representations. Viewed from differential geometry, this seminal work accomplishes the classification of all conformally covariant operators transforming differential forms on a Riemanniann manifold X to those on a submanifold in the model space (X, Y) = (Sn, Sn-1). Functional equations and explicit formulæ of these operators are also established. This book offers a self-contained and inspiring introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in representation theory, automorphic forms, differential geometry, and theoretical physicsBroken symmetry (Physics)Group theoryMathematical PhysicsSpeh, Birgitauthorhttp://id.loc.gov/vocabulary/relators/aut766106A book accessible through the World Wide Webhttp://link.springer.com/10.1007/978-981-13-2901-2.b1436345803-03-2228-03-19991003633589707536Symmetry breaking for representations of rank one orthogonal groups II1558274UNISALENTOle01328-03-19m@ -engsi 0002905 am 2200613 n 450 9910416525103321202001272-84832-402-310.4000/books.apu.7773(CKB)4100000011248759(FrMaCLE)OB-apu-7773(oapen)https://directory.doabooks.org/handle/20.500.12854/47350(PPN)24485985X(EXLCZ)99410000001124875920200515j|||||||| ||| 0freuu||||||m||||txtrdacontentcrdamediacrrdacarrierFaire trace… Entretiens avec Christian Pociello /Oumaya Hidri NeysArras Artois Presses Université20201 online resource (220 p.) 2-84832-162-8 Que laisse un enseignant-chercheur derrière lui lorsqu’il « disparaît » ? On pourrait se poser la question à propos de Christian Pociello, parti à la retraite en août 2007. Quelques souvenirs laissés aux étudiants et collègues qui ont croisé sa route, une bibliographie conséquente, des ouvrages dont certains ont « fait date »... Et petit à petit, l’oubli... Cet ouvrage retrace son parcours biographique. Christian Pociello est à la fois « représentatif » des premiers enseignants-chercheurs en STAPS issus de L’Éducation Physique et Sportive (EPS) et « atypique », du fait du caractère a priori improbable de sa trajectoire. Seul un récit de vie le plus complet possible pouvait illustrer ce cas exemplaire : son enfance, son parcours scolaire, ses travaux universitaires, ses recherches et publications, ses fonctions, ses échecs, ses amitiés et inimitiés, ses « coups de cœur » et « coups de gueule » sont ainsi explorés. Autant d’éléments qui permettent de comprendre son itinéraire, son cheminement intellectuel, ses choix. Autant d’éléments qui éclairent la constitution et l’évolution de la filière universitaire STAPS.EducationHospitality Leisure Sport & TourismbiographiesportenseignementétudeSTAPSfilière universitaireétudeenseignementbiographiefilière universitaireSTAPSsportEducationHospitality Leisure Sport & TourismbiographiesportenseignementétudeSTAPSfilière universitaireHidri Neys Oumaya1300210Vigarello Georges185145FR-FrMaCLEBOOK9910416525103321Faire trace… Entretiens avec Christian Pociello3025435UNINA