00893nam0-2200277 --450 991026555350332120180420110524.088-8082-325-620180420d1998----kmuy0itay5050 baitaITa a 001yy<<La >>Chiesa di S. Lorenzo a San Severotra provincia e capitaleMariella Basile Bonsanteappendice documentaria a cura di Giuliana MundiBariMario Adda Editore1998VIII, 138 p., 12 p. di tav.ill.31 cmSan SeveroSan Lorenzo726.5094575720Basile Bonsante,Mariella216765Mundi,GiulianaITUNINAREICATUNIMARCBK991026555350332103.1607789/2018DARSTDARSTChiesa di S. Lorenzo a San Severo918190UNINA01040nam a2200241 i 4500991003351439707536170329s1961 us b 000 0 eng db14320745-39ule_instDip. di Studi UmanisticiitaenglatHerodianus :Syrus533625Ab excessu divi Marci14116History of the Roman Empirefrom the death of Marcus Aurelius to the accession of Gordian III /Herodian of Antioch's ; translated from the Greek by Edward C. EcholsBerkeley :University of California Press,1961220 p :ill. ;22 cmBibliografia: p. 10.Echols, Edward C..b1432074529-03-1729-03-17991003351439707536LE007 880.1 Herodianus Syrus ECH 01.0112007000279649le007LE007 2017 Pregresso-E0.00-l- 00000.i1580155x29-03-17Ab excessu divi Marci14116UNISALENTOle00729-03-17ma -engus 0003127nam 2200601Ia 450 991078233570332120230120005813.01-281-76658-597866117665800-08-087377-4(CKB)1000000000551621(EBL)404864(OCoLC)476220393(SSID)ssj0000389759(PQKBManifestationID)12120569(PQKBTitleCode)TC0000389759(PQKBWorkID)10463829(PQKB)10745928(MiAaPQ)EBC404864(EXLCZ)99100000000055162119941123d1974 uy 0engur|n|---|||||txtccrNoneuclidean tesselations and their groups[electronic resource] /Wilhelm MagnusNew York ;London Academic Press19741 online resource (225 p.)Pure and applied mathematics ;61Description based upon print version of record.0-12-465450-9 Includes bibliography and index.Front Cover; Noneuclidean Tesselations and Their Groups; Copyright Page; Contents; Preface; Abbreviations and Symbols; CHAPTER I. ELEMENTARY CONCEPTS AND FORMULAS; I.1 The Group G* of Homographic Substitutions; I.2 Action of G* on the Closed Complex Plane C; I.3 Action of G* on Hyperbolic Three-Space; I.4 Circle Groups as Groups of Motions of Hyperbolic Two-Space; I.5 Notes on Elliptic and Spherical Geometry; I.6 Illustrations. References and Historical Remarks; I.7 Appendix: Hilbert's Axioms of Geometry; CHAPTER II. DISCONTINUOUS GROUPS AND TRIANGLE TESSELATIONS; II.1 Introductory RemarksII.2 Discontinuous Groups and Fundamental RegionsII.3 Triangle Groups, Local and Global Relations; II.4 Euclidean, Spherical, and Elliptic Triangle Groups; II.5 Hyperbolic Triangle Groups; II.6 Some Subgroups of Hyperbolic Triangle Groups; II.7 General Theorems. A Survey and References; CHAPTER III. NUMBER THEORETICAL METHODS; III.1 The Modular Group; III.2 Subgroups and Quotient Groups of the Modular Group; III.3 Groups of Units of Ternary Quadratic and Binary Hermitian Forms; CHAPTER IV. MISCELLANY; IV.1 Examples of Discontinuous Nonfuchsian Groups; IV.2 Fricke CharactersCHAPTER V. GROUPS THAT ARE DISCONTINUOUS IN HYPERBOLIC THREE-SPACEV.l Linear Groups over Imaginary Quadratic Number Fields; V.2 Some Geometric Contructions; Figures; References; IndexNoneuclidean tesselations and their groupsPure and Applied MathematicsTessellations (Mathematics)Geometry, Non-EuclideanTessellations (Mathematics)Geometry, Non-Euclidean.510.8 s511.6510/.8 s 511/.6516.9Magnus Wilhelm1907-1990.6717MiAaPQMiAaPQMiAaPQBOOK9910782335703321Noneuclidean Tesselations and Their Groups979052UNINA