02489nmm a2200433 i 4500991003325989707536m o d cr cnu|||unuuu170207s2015 sz a ob j 000 0 eng d9783319253725 (ebook)10.1007/978-3-319-25372-5doib1431633x-39ule_instBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematicaeng519.223AMS 60J80AMS 60G50AMS 60J85Shi, Zhan718982Branching Random Walks[e-book] :École d'Été de Probabilités de Saint-Flour XLII-2012 /Zhan ShiCham :Springer Intern. Publ.,20151 online resourcetexttxtrdacontentcomputercrdamediaonline resourcecrrdacarrierLecture notes in mathematics,1617-9692 ;2151Includes bibliographical referencesI Introduction ; II Galton-Watson trees ; III Branching random walks and martingales ; IV The spinal decomposition theorem ; V Applications of the spinal decomposition theorem ; VI Branching random walks with selection ; VII Biased random walks on Galton-Watson trees ; A Sums of i.i.d. random variables ; ReferencesProviding an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on treesRandom walks (Mathematics)CongressesBranching processesCongressesEcole d'été de probabilités de Saint-Flour<42. ;2012 ;Saint-Flour, France>Springer eBooksPrinted edition:9783319253718http://link.springer.com/book/10.1007/978-3-319-25372-5An electronic book accessible through the World Wide.b1431633x03-03-2207-02-17991003325989707536Branching random walks1395535UNISALENTOle01307-02-17m@ -engsz 00