02239nam a2200301 i 4500991002944169707536160712s2015 sz a ob 001 0 eng d9783319100876b14258079-39ule_instBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematicaeng516.3623AMS 32C38AMS 14F10Mochizuki, Takuro319920Mixed twistor D-modules /Takuro MochizukiCham [Switzerland] :Springer,c2015xx, 487 p. :ill. ;24 cmLecture notes in mathematics,0075-8434 ;2125Includes bibliographical references and indexIntroduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular valuesWe introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. ℗ℓD-modules.b1425807922-11-1612-07-16991002944169707536LE013 32C MOC11 (2015)12013000293660le013pE72.79-l- 01010.i1578875122-11-16Mixed twistor D-modules1387912UNISALENTOle01312-07-16ma -engsz 00