01035nam a2200253 i 450099100263888970753620020508203608.0940120s1989 it ||| | ita b11039218-39ule_instPARLA166419ExLIstituto di FilosofiaitaViola, Francesco10661Diritti dell'uomo, diritto naturale, etica contemporanea /Francesco ViolaTorino :Giappichelli,1989218 p. ;23 cm.Recta ratio ;4Diritti dell'uomo.b1103921823-02-1728-06-02991002638889707536LE005 Ist.Fil. XXXVI G 1512005000223426le005-E0.00-l- 03030.i1116176028-06-02LE005 Ist.Fil. XXXVI G 15 bis22005000234903le005-E0.00-l- 00000.i1116177228-06-02Diritti dell'uomo - Diritto naturale - Etica contemporanea644908UNISALENTOle00501-01-94ma -itait 0201779nam 2200385Ka 450 991069748250332120080825103712.0(CKB)5470000002388114(OCoLC)244388162(EXLCZ)99547000000238811420080825d2001 ua 0engtxtrdacontentcrdamediacrrdacarrierNumerical simulation of streamflow distribution, sediment transport, and sediment deposition along Long Branch Creek in Northeast Missouri[electronic resource] /by David C. Heimann ; prepared in cooperation with the Missouri Department of Conservation[Rolla, Mo.] :U.S. Dept. of the Interior, U.S. Geological Survey,[2001?]1 electronic text, (vi, 61 pages) HTML, digital, PDF fileWater-resources investigations report ;01-4269Title from title screen (viewed Aug. 25, 2008).StreamflowMissouriLong Branch CreekMathematical modelsSediment transportMissouriLong Branch CreekMathematical modelsSedimentation and depositionMissouriLong Branch CreekMathematical modelsStreamflowMathematical models.Sediment transportMathematical models.Sedimentation and depositionMathematical models.Heimann David C1386942Missouri.Department of Conservation.Geological Survey (U.S.)GPOGPOBOOK9910697482503321Numerical simulation of streamflow distribution, sediment transport, and sediment deposition along Long Branch Creek in Northeast Missouri3480840UNINA05714nam 2200709Ia 450 991083047550332120170815110602.01-282-30769-X97866123076900-470-31701-90-470-31785-X(CKB)1000000000806858(EBL)470072(SSID)ssj0000343129(PQKBManifestationID)11267359(PQKBTitleCode)TC0000343129(PQKBWorkID)10288442(PQKB)10180071(MiAaPQ)EBC470072(OCoLC)264389523(PPN)152555412(EXLCZ)99100000000080685819990222d2000 uy 0engur|n|---|||||txtccrSpatial tessellations[electronic resource] concepts and applications of Voronoi diagrams /Atsuyuki Okabe ... [et al.] ; with a foreword by D.G. Kendall2nd ed.Chichester ;New York Wileyc20001 online resource (696 p.)Wiley series in probability and statisticsRev. ed. of: Spatial tesselations / Atsuyuki Okabe, Barry Boots, Kokichi Sugihara.0-471-98635-6 Includes bibliographical references (p. [585]-655) and index.Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; Contents; Foreword to the First Edition; Preface to the Second Edition; Acknowledgements (First Edition); Acknowledgements (Second Edition); Chapter 1 Introduction; 1.1 Outline; 1.2 History of the concept of the Voronoi diagram; 1.3 Mathematical preliminaries; 1.3.1 Vector geometry; 1.3.2 Graphs; 1.3.3 Spatial stochastic point processes; 1.3.4 Efficiency of computation; Chapter 2 Definitions and Basic Properties of Voronoi Diagrams; 2.1 Definitions of the ordinary Voronoi diagram2.2 Definitions of the Delaunay tessellation (triangulation)2.3 Basic properties of the Voronoi diagram; 2.4 Basic properties of the Delaunay triangulation; 2.5 Graphs related to the Delaunay triangulation; 2.6 Recognition of Voronoi diagrams; 2.6.1 The geometric approach; 2.6.2 The cambinatorial approach; Chapter 3 Generalizations of the Voronoi diagram; 3.1 Weighted Voronoi diagrams; 3.1.1 The multiplicatively weighted Voronoi diagram; 3.1.2 The additively weighted Voronoi diagram; 3.1.3 The compoundly weighted Voronoi diagram; 3.1.4 The power diagram; 3.1.5 The sectional Voronoi diagram3.1.6 Applications3.2 Higher-order Voronoi diagrams; 3.2.1 The order-k Voronoi diagram; 3.2.2 The ordered order-k Voronoi diagram; 3.2.3 Applications; 3.3 The Farthest-point Voronoi diagram and kth nearest-point Voronoi diagram; 3.3.1 The farthest-point Voronoi diagram; 3.3.2 The kth nearest-point Voronoi diagram; 3.3.3 Applications; 3.4 Voronoi diagrams wih obstacles; 3.4.1 The shortest-path Voronoi diagram; 3.4.2 The visibility shortest-path Voronoi diagram; 3.4.3 The constrained Delaunay triangulation; 3.4.4 SP- and VSP-Voronoi diagrams in a simple polygon; 3.4.5 Applications3.5 Voronoi diagrams for lines3.5.1 Voronoi diagrams for a set of points and straight line segments; 3.5.2 Voronoi diagrams for a set of points, straight line segments and circular arcs; 3.5.3 Voronoi diagrams for a set of circles; 3.5.4 Medial axis; 3.5.5 Applications; 3.6 Voronoi diagrams for areas; 3.6.1 The area Voronoi diagram; 3.6.2 Applications; 3.7 Voronoi diagrams with V-distances; 3.7.1 Voronoi diagrams with the Minkowski metric Lp; 3.7.2 Voronoi diagrams with the convex distance; 3.7.3 Voronoi diagrams with the Karlsruhe metric; 3.7.4 Voronoi diagrams with the Hausdorff distance3.7.5 Voronoi diagram with the boat-on-a-river distance3.7.6 Voronoi diagrams on a sphere; 3.7.7 Voronoi diagrams on a cylinder; 3.7.8 Voronoi diagrams on a cone; 3.7.9 Voronoi diagrams on a polyhedral surface; 3.7.10 Miscellany; 3.7.11. Applications; 3.8 Network Voronoi diagrams; 3.8.1 The network Voronoi node diagram; 3.8.2 The network Voronoi link diagram; 3.8.3 The network Voronoi area diagram; 3.8.4 Applications; 3.9 Voronoi diagrams for moving points; 3.9.1 Dynamic Voronoi diagrams; 3.9.2 Applications; Chapter 4 Algorithms for Computing Voronoi Diagrams; 4.1 Computational preliminaries4.2 Data structure for representing a Voronoi diagramSpatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of VoronoiWiley series in probability and statistics.GeometryData processingSpatial analysis (Statistics)Voronoi polygonsGeometryData processing.Spatial analysis (Statistics)Voronoi polygons.519.53519.536Okabe Atsuyuki1945-871584Okabe Atsuyuki1945-871584Okabe Atsuyuki1945-871584MiAaPQMiAaPQMiAaPQBOOK9910830475503321Spatial tessellations3965953UNINA