01124nam0 2200289 i 450 SUN001533920150730091823.94288-8358-489-90.0020040116d2003 |0itac50 baitaIT|||| |||||ˆL'‰immagine di Chiesa nella dottrina sociale cristianaAntonio PanicoRomaArmandoc2003176 p.22 cm.001SUN00153402001 Ricercare formando210 RomaArmando.ChiesaStoriografiaFISUNC007022RomaSUNL00036027021Panico, AntonioSUNV01113735340ArmandoSUNV000250650ITSOL20181109RICASUN0015339UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00 CONS XII.Ea.58 00 25277 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA25277CONS XII.Ea.58paImmagine di Chiesa nella dottrina sociale cristiana1386292UNICAMPANIA01669nam a22003131i 450099100237685970753620030609101039.0030925s1961 it |||||||||||||||||ita b12280215-39ule_instARCHE-032778ExLBiblioteca InterfacoltàitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.932Pirenne, Jacques138722Storia della civiltà dell'antico Egitto /Jacques Pirenne ; con la collaborazione artistica di Arpag MekhitarianFirenze :Sansoni,c19613 v. ;27 cmEgitto anticoMekhitarian, Arpag.b1228021502-04-1408-10-03991002376859707536LE007 932 PIR 01.01v. 112015000093806le007LE007-0401-E0.00-l- 00000.i1324725601-04-04LE007 932 PIR 01.01v. 212015000093813le007LE007-0401-E0.00-l- 00000.i1324727x01-04-04LE007 932 PIR 01.01v. 312015000093820le007LE007-0401-E0.00-l- 00000.i1324731101-04-04LE002 St. X M 9/1V. 112002000121349le002-E0.00-l- 00000.i1267272508-10-03LE002 St. X M 9/IIV. 212002000121332le002-E0.00-l- 00000.i1267273708-10-03LE002 St. X M 9/IIIV. 312002000121325le002-E0.00-l- 00000.i1267274908-10-03Histoire de la Civilisation de l'Egypte Ancienne54321UNISALENTO(3)le007(3)le00208-10-03ma -itait 0604587nam 22007455 450 991086526400332120251113185926.09783031572043(electronic bk.)978303157203610.1007/978-3-031-57204-3(MiAaPQ)EBC31466813(Au-PeEL)EBL31466813(CKB)32273988700041(DE-He213)978-3-031-57204-3(OCoLC)1441787217(EXLCZ)993227398870004120240610d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierToric Topology and Polyhedral Products /edited by Anthony Bahri, Lisa Jeffrey, Taras Panov, Donald Stanley, Stephen Theriault1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (325 pages)Fields Institute Communications,2194-1564 ;89Print version: Bahri, Anthony Toric Topology and Polyhedral Products Cham : Springer,c2024 9783031572036 Preface -- Connected sums of sphere products and minimally non-Golod complexes -- Toric manifolds over 3-polytopes -- Symmetric products and a Cartan-type formula for polyhedral products -- Multiparameter persistent homology via generalized Morse theory -- Compact torus action on the complex Grassmann manifolds -- On the enumeration of Fano Bott manifolds -- Dga models for moment-angle complexes -- Duality in toric topology -- Bundles over connected sums -- The SO(4) Verlinde formula using real polarizations -- GKM graph locally modelled by TnxS1-action on T*Cn and its graph equivariant cohomology -- On the genera of moment-angle manifolds associated to dual-neighborly polytopes: combinatorial formulas and sequences -- Homeomorphic model for the polyhedral smash product of disks and spheres -- Invariance of polarization induced by symplectomorphisms -- Polyhedral products for wheel graphs and their generalizations -- On the cohomology ring of real moment-angle complexes.This book explores toric topology, polyhedral products and related mathematics from a wide range of perspectives, collectively giving an overview of the potential of the areas while contributing original research to drive the subject forward in interesting new directions. Contributions to this volume were written in connection to the thematic program Toric Topology and Polyhedral Products held at the Fields Institute from January-June 2020. 16 original conributions were inspired or influenced by the program. Toric Topology arose as a subject in its own right about twenty-five years ago. It sits at the intersection of commutative algebra, topology, combinatorics, algebraic geometry, and symplectic and convex geometry. Polyhedral products are a functorial generalization of a construction that is at the centre of Toric Topology. They are of independent interest and unify several constructions that arise in a diverse range of areas, such as geometric group theory, homotopy theory, algebraic combinatorics and subspace arrangements.Fields Institute Communications,2194-1564 ;89Algebraic topologyManifolds (Mathematics)Geometry, AlgebraicCommutative algebraCommutative ringsGlobal analysis (Mathematics)Algebraic TopologyManifolds and Cell ComplexesAlgebraic GeometryCommutative Rings and AlgebrasGlobal Analysis and Analysis on ManifoldsAlgebraic topology.Manifolds (Mathematics)Geometry, Algebraic.Commutative algebra.Commutative rings.Global analysis (Mathematics)Algebraic Topology.Manifolds and Cell Complexes.Algebraic Geometry.Commutative Rings and Algebras.Global Analysis and Analysis on Manifolds.514.2Bahri Abbas150385Jeffrey Lisa C.1965-1803082Panov Taras E.1975-1803083Stanley Donald1966-1803084Theriault Stephen1969-1803085MiAaPQMiAaPQMiAaPQ9910865264003321Toric Topology and Polyhedral Products4349681UNINA