00898nam0-22002891i-450-99000435139040332120050323133427.0000435139FED01000435139(Aleph)000435139FED0100043513919990604d1980----km-y0itay50------baitaa-------00---Population growth and agrarian changean historical perpsectiveDavid GriggCambridge , LondonCambridge University press1980.XII, 340 p.23 ill.24 cmCambridge geographical studies13338.121itaGrigg,David<1934- >89260ITUNINARICAUNIMARCBK990004351390403321338.1 GRI 1I.st.r.c.2953FLFBCFLFBCPopulation growth and agrarian change486250UNINA05414nam 2200697Ia 450 991045526280332120200520144314.0981-277-607-9(CKB)1000000000766948(EBL)1193222(SSID)ssj0000518211(PQKBManifestationID)12215469(PQKBTitleCode)TC0000518211(PQKBWorkID)10508919(PQKB)10390602(MiAaPQ)EBC1193222(WSP)00001419 (Au-PeEL)EBL1193222(CaPaEBR)ebr10688097(CaONFJC)MIL491692(OCoLC)826660606(EXLCZ)99100000000076694820080417d2008 uy 0engur|n|---|||||txtccrGeometric control and nonsmooth analysis[electronic resource] in honor of the 73rd birthday of H. Hermes and of the 71st birthday of R.T. Rockafellar /edited by Fabio Ancona ... [et al.]Singapore Hackensack, NJ World Scientificc20081 online resource (376 p.)Series on advances in mathematics for applied sciences ; v. 76Description based upon print version of record.981-277-606-0 Includes bibliographical references and index.Preface; Conference Committees; CONTENTS; Multiscale Singular Perturbations and Homogenization of Optimal Control Problems 0. Alvarez, M. Bardi and C. Marchi; 1. Introduction; 2. Standing assumptions; 3. Ergodicity, stabilization and the effective problem; 3.1. Ergodicity and the effective Hamiltonian; 3.2. Stabilization and the eflective initial data; 4. Regular perturbation of singular perturbation problems; 5. Singular perturbations with multiple scales; 5.1. The three scale case; 5.2. The general case; 6. Iterated homogenization for coercive equations; 7. Examples7.1. Singular perturbation of a differential game7.2. Homogenization of a deterministic optimal control problem; 7.3. Multiscale singular perturbation under a nonresonance condition; References; Patchy Feedbacks for Stabilization and Optimal Control: General Theory and Robustness Properties F. Ancona and A. Bressan; 1. Introduction; 2. Patchy vector fields and patchy feedbacks; 3. Stabilizing feedback controls; 4. Nearly optimal patchy feedbacks; 5. Robustness; 6. Stochastic perturbations; References; Sensitivity of Control Systems with Respect to Measure- Valued Coefficients Z. Artstein1. Introduction2. Standing hypotheses; 3. The chattering parameters model; 4. The Prohorov metric; 5 . Sensitivity for relaxed controls; 6. A matching result; 7. Sensitivity for chattering parameters; 8. Remarks and examples; References; Systems with Continuous Time and Discrete Time Components A. Bacciotti; 1. Introduction; 2. Description of the model; 3. Oscillatory systems: an example; 4. Stability notions; 5. A sufficient condition for stability; 6. Sufficient conditions for asymptotic stability; References; A Review on Stability of Switched Systems for Arbitrary Switchings U. Boscain1. Introduction2. General properties of multilinear systems; 3. Common Lyapunov functions; 4. Two-dimensional bilinear systems; 4.1. The diagonalisable case; 4.1.1. Normal forms in the diagonalizable case; 4.1.2. Stability conditions in the diagonalizable case; 4.2. The nondiagonalizable case; 4.2.1. Normal forms in the nondiagonalizable case; 4.2.2. Stability conditions in the nondiagonalizable case; 5. An open problem; Acknowledgments; References; Regularity Properties of Attainable Sets under State Constraints P. Cannarsa, M. Castelpietra and P. Cardaliaguet; 1. Introduction2. Maximum principle under state constraints3. Perimeter estimates for the attainable set; References; A Generalized Hopf-Lax Formula: Analytical and Approxi- mations Aspects I. Capuzzo Dolcetta; 1. Introduction; 2. A generalized eikonal equation; 3. The generalized Hopf-Lax formula; 4. The Hopf-Lax formula for the Heisenberg Hamiltonian; 4.1. A singular perturbation problem on the Heisenberg group; 4.2. Convergence rate of finite diflerences approximation; References; Regularity of Solutions to One-Dimensional and Multi- Dimensional Problems in the Calculus of Variations F.H. Clarke1. IntroductionThe aim of this volume is to provide a synthetic account of past research, to give an up-to-date guide to current intertwined developments of control theory and nonsmooth analysis, and also to point to future research directions.Series on advances in mathematics for applied sciences ; v. 76.Control theoryResearchNonsmooth optimizationResearchSystems engineeringResearchElectronic books.Control theoryResearch.Nonsmooth optimizationResearch.Systems engineeringResearch.515/.642Ancona Fabio1964-738757Hermes Henry1933-14388Rockafellar R. Tyrrell1935-6371MiAaPQMiAaPQMiAaPQBOOK9910455262803321Geometric control and nonsmooth analysis2133156UNINA00934nam a22002651i 450099100223058970753620040219100940.0040407s2001 gw a||||||||||||||||ger b1289090x-39ule_instARCHE-087052ExLDip.to Filologia Class. e Scienze FilosoficheitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.938Dreher, Martin440691Athen und Sparta /Martin DreherMünchen :C. H. Beck,c2001221 p. :ill. ;23 cmStudiumAteneStoriaSpartaStoria.b1289090x02-04-1416-04-04991002230589707536LE007 938 DRE 01.0112007000072257le007-E30.00-l- 00000.i1345485716-04-04Athen und Sparta305456UNISALENTOle00716-04-04ma -gerde 01