00723nam0-22002771i-450-990003197550403321000319755FED01000319755(Aleph)000319755FED0100031975520000920d1989----km-y0itay50------baitaIT<<I >>sociologi e l'ambientea cura di Franco Martinelli.RomaBulzoni1989.307 p.21 cm16200Martinelli,Franco<1933- >ITUNINARICAUNIMARCBK99000319755040332116200 SOC8664SESSESSociologi e l'ambiente273318UNINAING0101148nam a2200289 i 450099100213858970753620250206123202.0010315s1970 it ||1 | ita db10321846-39ule_instEXGIL98082ExLBibl. Interfacoltà T. PellegrinoitaSocioculturale Scsita320.090423Fiore, Vittore300700Chi lega i fili :un omaggio a Vittore Fiore /di Mario Dilio e Pasquale SatalinoBari :Adriatica,1970XX, 177 p. ;21 cmFiore, VittoreScritti in onoreQuestione meridionaleTeorieDilio, Marioauthorhttp://id.loc.gov/vocabulary/relators/aut467375Satalino, Pasqualeauthorhttp://id.loc.gov/vocabulary/relators/aut733373.b1032184602-04-1427-06-02991002138589707536LE002 Sal. III G 1212002000985491le002-E0.00-no00000.i1037909527-06-02Chi lega i fili1445592UNISALENTOle00201-01-01ma-itait0102995nam 22006975 450 991100145650332120260128110235.03-662-71224-510.1007/978-3-662-71224-5(CKB)38696235700041(MiAaPQ)EBC32068813(Au-PeEL)EBL32068813(DE-He213)978-3-662-71224-5(EXLCZ)993869623570004120250501d2025 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierElliptic Functions and Modular Forms /by Max Koecher, Aloys Krieg1st ed. 2025.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2025.1 online resource (373 pages)Universitext,2191-66753-662-71223-7 Includes bibliographical references and index.1 Elliptic functions -- 2 Geometry in the upper-half plane and the action of the modular group -- 3 Modular forms -- 4 The Hecke-Petersson theory -- 5 Theta series.The theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass’s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic.Universitext,2191-6675Functions of complex variablesNumber theoryGeometry, HyperbolicGroup theoryFunctions of a Complex VariableNumber TheoryHyperbolic GeometryGroup Theory and GeneralizationsFormes modularsthubFuncions el·líptiquesthubLlibres electrònicsthubFunctions of complex variables.Number theory.Geometry, Hyperbolic.Group theory.Functions of a Complex Variable.Number Theory.Hyperbolic Geometry.Group Theory and Generalizations.Formes modularsFuncions el·líptiques516.9Koecher Max62857Krieg AloysMiAaPQMiAaPQMiAaPQBOOK9911001456503321Elliptic Functions and Modular Forms4384381UNINA