01063nam a2200265 i 450099100205536970753620020503160641.0001103s1972 it ||| | ita b10310381-39ule_instEXGIL96786ExLBiblioteca Interfacoltàita398.209Pasolini, Pier Paolo<1922-1975>153085Canzoniere italiano /antologia della poesia popolare a cura di Pier Paolo PasoliniMilano :Garzanti,19722 v. (531 p. compless.) ;18 cm.I GarzantiCanti popolari italiani.b1031038102-04-1427-06-02991002055369707536LE002 It. XVIII B 4 IV. 112002000666024le002-E0.00-l- 02020.i1036616727-06-02LE002 It. XVIII B 4 IIV. 212002000666031le002-E0.00-l- 02020.i1036617927-06-02Canzoniere italiano201413UNISALENTOle00201-01-00ma -itait 0201791nam0 22004093i 450 VAN026138320231018044923.819N978354038488520230713d1979 |0itac50 baengDE|||| |||||Representations of Finite Chevalley GroupsA SurveyBhama SrinivasanBerlinSpringer1979XIV, 182 p.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer76420-XXGroup theory and generalizations [MSC 2020]VANC019715MF20G05Representation theory for linear algebraic groups [MSC 2020]VANC022417MF20G40Linear algebraic groups over finite fields [MSC 2020]VANC023977MF20G10Cohomology theory for linear algebraic groups [MSC 2020]VANC024248MFAlgebraKW:KAlgebraic groupsKW:KChevalley groupKW:KCohomologyKW:KDepictionKW:KFinite GroupsKW:KBerlinVANL000066SrinivasanBhamaVANV21569359190Springer <editore>VANV108073650ITSOL20240614RICAhttps://doi.org/10.1007/BFb0097139E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0261383BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 6229 08eMF6229 20230725 Representations of finite Chevalley groups81034UNICAMPANIA02116nam2 22004333i 450 VAN0026440420250127040546.448N978354038864720231004d1988 |0itac50 baengDE|||| |||||Constructions of Lie Algebras and their ModulesGeorge B. SeligmanBerlinSpringer1988viii, 196 p.24 cm001VAN001025502001 Il diritto amministrativo tra particolarismo e universalismoGiuseppe Morbidelli210 NapoliEditoriale scientifica2012215 101 p.21 cm.130015A66Clifford algebras, spinors [MSC 2020]VANC022018MF16W10Rings with involution; Lie, Jordan and other nonassociative structures [MSC 2020]VANC022266MF17-XXNonassociative rings and algebras [MSC 2020]VANC021290MF17B10Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) [MSC 2020]VANC024337MF17B20Simple, semisimple, reductive (super)algebras [MSC 2020]VANC024166MF17C40Exceptional Jordan structures [MSC 2020]VANC037685MFAlgebraKW:KAssociative algebraKW:KClifford AlgebraKW:KFieldsKW:KLie AlgebrasKW:KQuadratic formsKW:KBerlinVANL000066SeligmanGeorge B.VANV20762942120Springer <editore>VANV108073650ITSOL20250328RICAhttps://doi.org/10.1007/BFb0079295E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00264404BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 6949 08eMF6949 20231023 Constructions of Lie algebras and their modules78599UNICAMPANIA